Hostname: page-component-788cddb947-r7bls Total loading time: 0 Render date: 2024-10-19T19:52:33.866Z Has data issue: false hasContentIssue false

Allozymic Markers and Genetic Characterization of a Natural Population of Vriesea friburgensis var. Paludosa, a Bromeliad from the Atlantic Forest

Published online by Cambridge University Press:  12 February 2007

G. M. Alves
Affiliation:
Núcleo de Pesquisas em Florestas Tropicais, Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis, SC 88040-900, Brazil
A. R. Filho
Affiliation:
Núcleo de Pesquisas em Florestas Tropicais, Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis, SC 88040-900, Brazil
A. Puchalski
Affiliation:
Núcleo de Pesquisas em Florestas Tropicais, Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis, SC 88040-900, Brazil
M. S. Reis
Affiliation:
Núcleo de Pesquisas em Florestas Tropicais, Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis, SC 88040-900, Brazil
R. O. Nodari
Affiliation:
Núcleo de Pesquisas em Florestas Tropicais, Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis, SC 88040-900, Brazil
M. R. Guerra*
Affiliation:
Núcleo de Pesquisas em Florestas Tropicais, Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis, SC 88040-900, Brazil
*
* Corresponding author. E-mail: mpguerra@cca.ufsc.br

Abstract

A natural population of Vriesea friburgensis var. paludosa was genetically and demographically characterized. Four selected enzymatic systems were used. In total, 10 allozymic loci were analysed. The proportion of polymorphic loci was 70% and the number of alleles per locus was 2.3· The mean observed and expected heterozygosities were 0.234 and 0.226, respectively. An excess of heterozygotes was revealed by the value of the fixation index (—0.035). These indices showed the presence of high levels of genetic diversity in the population studied. A demographic survey revealed almost six times more vegetative than sexually reproductive plants. Reproductive plants were found only in clusters. The genetic diversity exhibited by this population, associated with vegetative as well as sexual propagation, resulting in clusters or colonies, would allow the employment of a sustainable management strategy for species conservation as well as its exploitation as an ornamental.

Type
Research Article
Copyright
© NIAB 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alienas, AC, Peters, I, Wand, Brune Passador, GC (1991) Eletroforese de proteínas e isoenzimas de fungos e essências florestais. Universidade Federal de Viçosa, Viçosa.Google Scholar
Alvarez-Buylla, ER and Garay, A (1994) Population genetic structure of Cecopria obtusifolia, a tropical pioneer species. Evolution 48: 437453·Google Scholar
Cheliak, WN and Pittel, JA (1984) Techniques for Starch Gel Electrophoresis of Enzymes from Forest Tree Species. Canadian Forestry Service Information Report PI-X-42. Ottawa: Pateya National Forestry Institute.Google Scholar
Report, Country (1996) Brazil. Report to the International Conference and Programme for Plant Genetic Resources (ICPPGR). Brasilia: CENARGEN, http:/www.embrapa.br/cenargen (accessed November 2002).Google Scholar
Fantini, AC, Reis, A, Reis, MS and Guerra, MP (1992) Sustained yield management in Tropical Forest: a proposal based on the autoecology of the species. Sellowia 42–44: 2533.Google Scholar
Hamrick, JL and Godt, MJW (1989) Allozyme diversity in plant species. In: Brown, ADH, Clegg, MT, Kahler, AL and Weir, BS (eds) Plant Population Genetics, Breeding and Genetic Resources. Sunderland, MA: Sinauer, pp. 4363.Google Scholar
Hamrick, JL, Godt, MJW and Sherman-Broyles, SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forest 6: 95124.Google Scholar
Klein, RM (1990) Espécies raras ou ameaçadas de extinção— Estado de Santa Catarina: mirtáceas e hromeliáceas, Vol. 1. Rio de Janeiro: IBGE.Google Scholar
Loveless, MD and Hamrick, JL (1984) Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15: 6595.Google Scholar
Murawski, DA and Hamrick, JL (1990) Local genetic and clonal structure in the tropical terrestrial bromeliad, Aechmea magdalenae. American Journal of Botany 77: 12011208.Google Scholar
Murawski, DA and Hamrick, JL (1992) Mating system and phenology of Ceiba pentandra (Bombacaceae) in Central Panamá. Journal of Heredity 83: 401404.Google Scholar
Nei, M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583590.Google Scholar
O'Malley, DM and Bawa, KS (1987) Mating system of a tropical rain forest tree species. American Journal of Botany 74: 11431149.Google Scholar
Peters, C, Gentry, AH and Mendelsohn, RO (1989) Valuation of an Amazonian rain forest. Nature 339: 655656.Google Scholar
Reis, MS (1996) Dinamica da movimentação dos alelos : subsídios para conservaçào e manejo de populações naturais em plantas. Revista Brasileira de Genética 19(4): 3747.Google Scholar
Reis, MS, Fantini, AC, Nodari, RO, Reis, A, Guerra, MP and Mantovani, A (2000) Management and conservation of natural populations in atlantic rainforest: the palmito study case. Biotropica 32(4b): 894902 (Special contents).Google Scholar
Reitz, R (1983) Bromeliáceas e a malária-Bromélia endêmica. Flora ilustrada Catarinense. Itajaí: Herbário Barbosa Rodrigues.Google Scholar
Soltis, DE, Gilmartin, AJ, Rieseberg, L and Gardner, S (1987) Genetic variation in the epiphytes Tillandsia ionantha and T. recuvarta (Bromeliaceae). American Journal of Botany 74: 531537.Google Scholar
Swofford, DL and Selander, RB (1989) A Computer Program for the Analysis of Allelic Variation in Population Genetics and Biochemical Systematics, Release 1.7. Illinois: Natural History Survey, 43 pp.Google Scholar
Weir, BS (1990) Genetic Data Analysis. Methods for Discrete Population Genetic Data. Sunderland, MA: Sinauer Associates.Google Scholar
Wolf, JHD and Konings, CJF (2001) Toward the sustainable harvesting of epiphytic bromeliads: a pilot study from the highlands of Chiapas, Mexico. Biological Conservation 101: 2331.Google Scholar