Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-xbbwl Total loading time: 1.041 Render date: 2021-03-01T13:27:02.920Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Direct multiplex PCR for grapevine genotyping and varietal identification

Published online by Cambridge University Press:  05 December 2012

Daniele Migliaro
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Treviso, Italy
Giacomo Morreale
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Treviso, Italy
Massimo Gardiman
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Treviso, Italy
Sara Landolfo
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Treviso, Italy
Manna Crespan
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Treviso, Italy
Corresponding
E-mail address:

Abstract

Grapevine cultivar identification is based mainly on two complementary methodologies: microsatellite (simple sequence repeat (SSR)) DNA analysis and traditional ampelography. Here, we report a direct multiplex PCR approach that allows the simultaneous amplification of 11 SSR loci from crude samples, i.e. bypassing DNA extraction, by using an engineered DNA polymerase improved to tolerate plant PCR inhibitors. Many different plant tissues were successfully amplified: leaf, root, wood, berry flesh and skin, stalk and must, from wine and table grape varieties, and rootstocks. The direct multiplex PCR that we propose is quicker and cheaper than the methodologies used until now, and provides accurate results. Thus, SSR DNA analysis becomes economically more accessible to a larger number of potential users in addition to research institutes.

Type
Short Communication
Copyright
Copyright © NIAB 2012 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bowers, JE, Dangl, GS and Meredith, CP (1999) Development and characterization of additional microsatellite DNA markers for grape. American Journal of Enology and Viticulture 50: 243246.Google Scholar
Crespan, M (2003) The parentage of Muscat of Hamburg. Vitis 42: 193197.Google Scholar
Crespan, M, Cabello, F, Giannetto, S, Ibáñez, J, Kontić, JK, Maletić, E, Pejić, I, Rodriguez, I and Antonacci, D (2006) Malvasia delle Lipari, Malvasia di Sardegna, Greco di Gerace, Malvasia de Sitges and Malvasia dubrovačka – synonyms of an old and famous grape cultivar. Vitis 45: 6973.Google Scholar
Ibáñez, J, Vargas, AM, Palancar, M, Borrego, J and De Andrés, MT (2009) Genetic relationships among table-grape varieties. American Journal of Enology and Viticulture 60: 3542.Google Scholar
Kalinowski, ST, Taper, ML and Marshall, TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 10991106.CrossRefGoogle ScholarPubMed
Merdinoglu, D, Butterlin, G, Bevilacqua, L, Chiquet, V, Adam-Blondon, AF and Decroocq, S (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Molecular Breeding 15: 349366.CrossRefGoogle Scholar
Moreno-Sanz, P, Loureiro, MD and Suárez, B (2011) Microsatellite characterization of grapevine (Vitis vinifera L.) genetic diversity in Asturias (Northern Spain). Scientia Horticulturae 129: 433440.CrossRefGoogle Scholar
Organisation Internationale de la Vigne et du Vin (OIV) (2009) OIV Descriptor List for Grape Varieties and Vitis Species, 2nd edn. Available at: http://www.oiv.int/oiv/info/frplubicationoiv. Paris: OIV Publisher.Google Scholar
Sefc, KM, Lefort, F, Grando, MS, Scott, KD, Steinkellner, H and Thomas, MR (2001) Microsatellite markers for grapevine: a state of the art. In: Roubelakis-Angelakis, (ed.) Molecular Biology and Biotechnology of Grapevine. Amsterdam: Kluwer Publishers, pp. 130.Google Scholar
This, P, Jung, A, Boccacci, P, Borrego, J, Botta, R, Costantini, L, Crespan, M, Dangl, GS, Eisenheld, C, Ferreira-Monteiro, F, Grando, S, Ibáñez, J, Lacombe, T, Laucou, V, Magalhães, M, Meredith, CP, Milani, N, Peterlunger, E, Regner, F, Zulini, L and Maul, E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theoretical and Applied Genetics 109: 14481458.CrossRefGoogle ScholarPubMed
This, P, Lacombe, T and Thomas, MR (2006) Historical origins and genetic diversity of wine grapes. Trends in Genetics 22: 511519.CrossRefGoogle ScholarPubMed
Welter, LJ, Göktürk-Baydar, N, Akkurt, M, Maul, E, Eibach, R, Töpfer, R and Zyprian, EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L.). Molecular Breeding 20: 359374.CrossRefGoogle Scholar

Migliaro Supplementary Material

Tables 1-2

File 53 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 19
Total number of PDF views: 89 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Direct multiplex PCR for grapevine genotyping and varietal identification
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Direct multiplex PCR for grapevine genotyping and varietal identification
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Direct multiplex PCR for grapevine genotyping and varietal identification
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *