Skip to main content Accessibility help
×
Home

Application of SV markers developed from Dongxiang common wild rice in analysis of cultivated rice

Published online by Cambridge University Press:  08 May 2019

Fantao Zhang
Affiliation:
College of Life Sciences, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Yuan Luo
Affiliation:
College of Life Sciences, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Bin Ai
Affiliation:
College of Life Sciences, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Yong Chen
Affiliation:
College of Life Sciences, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Weidong Qi
Affiliation:
College of Life Sciences, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Jiankun Xie
Affiliation:
College of Life Sciences, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Corresponding

Abstract

Dongxiang common wild rice (Oryza rufipogon Griff., DXWR) is an important genetic resource for the improvement of cultivated rice. For the past three decades, great achievements have been made in the field of molecular marker development. Although structural variations (SVs) had been studied between DXWR and Nipponbare (Oryza sativa L. ssp. japonica), the development and application of SV markers in DXWR has not been reported. In this study, based on the genome-wide SV loci, we developed and synthesized a total of 195 SV markers that were evenly distributed across the 12 rice chromosomes. Then, these markers were tested for their stabilities and polymorphisms. Of these 195 markers, 147 (75.4%) were successfully amplified and displayed abundant polymorphisms between DXWR and Nipponbare. Meanwhile, through the genotyping of 20 rice varieties from 13 countries and areas, we concluded that these SV markers have a wide application prospect in the analysis of cultivated rice. Therefore, these molecular markers greatly enrich the number of markers available for DXWR, which will facilitate genomic research and molecular breeding for this important and endangered germplasm resource.

Type
Short Communication
Copyright
Copyright © NIAB 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Abdel-Latif, A and Osman, G (2017) Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods 13: 1.CrossRefGoogle ScholarPubMed
Davey, JW, Hohenlohe, PA, Etter, PD, Boone, JQ, Catchen, JM and Blaxter, ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics 12: 499510.CrossRefGoogle ScholarPubMed
Eren, AM, Vineis, JH, Morrison, HG and Sogin, ML (2013) A filtering method to generate high quality short reads using illumina paired-end technology. PLoS One 8: e66643.CrossRefGoogle ScholarPubMed
Hayashi, K, Hashimoto, N, Daigen, M and Ashikawa, I (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theoretical and Applied Genetics 108: 12121220.CrossRefGoogle ScholarPubMed
Kaur, S, Panesar, PS, Bera, MB and Kaur, V (2015) Simple sequence repeat markers in genetic divergence and marker-assisted selection of rice cultivars: a review. Critical Reviews in Food Science and Nutrition 55: 4149.CrossRefGoogle ScholarPubMed
Li, YR, Zheng, HC, Luo, RB, Wu, HL, Zhu, HM, Li, RQ, Cao, HZ, Wu, BX, Huang, SJ, Shao, HJ, Ma, HZ, Zhang, F, Feng, SJ, Zhang, W, Du, HL, Tian, G, Li, JX, Zhang, XQ, Li, SG, Bolund, L, Kristiansen, K, de Smith, AJ, Blakemore, AI, Coin, LJ, Yang, HM, Wang, J and Wang, J (2011) Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nature Biotechnology 29: 723730.CrossRefGoogle ScholarPubMed
Mao, DH, Yu, L, Chen, DZ, Li, LY, Zhu, YX, Xiao, YQ, Zhang, DC and Chen, CY (2015) Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon Griff.) to its high-latitude habitat. Theoretical and Applied Genetics 128: 13591371.CrossRefGoogle Scholar
Ren, Y, Zhao, H, Kou, QH, Jiang, J, Guo, SG, Zhang, HY, Hou, WJ, Zou, XH, Sun, HH, Gong, GY, Levi, A and Xu, Y (2012) A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS ONE 7: e29453.CrossRefGoogle ScholarPubMed
Untergasser, A, Cutcutache, I, Koressaar, T, Ye, J, Faircloth, BC, Remm, M and Rozen, SG (2012) Primer3 -- new capabilities and interfaces. Nucleic Acids Research 40: e115.CrossRefGoogle ScholarPubMed
Wang, W, Chen, BZ, Zhang, L, Yan, JJ, Lu, YP, Zhang, XY, Jiang, YJ, Wu, TJ, van Peer, AF, Li, SJ and Xie, BG (2015) Structural variation (SV) markers in the Basidiomycete Volvariella volvacea and their application in the construction of a genetic map. International Journal of Molecular Sciences 16: 1666916682.CrossRefGoogle ScholarPubMed
Xu, X, Liu, X, Ge, S, Jensen, JD, Hu, FY, Li, X, Dong, Y, Gutenkunst, RN, Fang, L, Huang, L, Li, JX, He, WM, Zhang, GJ, Zheng, XM, Zhang, FM, Li, YR, Yu, C, Kristiansen, K, Zhang, XQ, Wang, J, Wright, M, McCouch, S, Nielsen, R, Wang, J and Wang, W (2011) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology 30: 105111.CrossRefGoogle ScholarPubMed
Yadav, MK, Aravindan, S, Ngangkham, U, Shubudhi, HN, Bag, MK, Adak, T, Munda, S, Samantaray, S and Jena, M (2017) Use of molecular markers in identification and characterization of resistance to rice blast in India. PLoS ONE 12: e0176236.CrossRefGoogle ScholarPubMed
Zhang, X, Zhou, S, Fu, Y, Su, Z, Wang, X and Sun, C (2006) Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (Oryza rufipogon Griff.). Plant Molecular Biology 62: 247259.CrossRefGoogle Scholar
Zhang, FT, Zhang, LX, Cui, FL, Luo, XD, Zhou, Y and Xie, JK (2015) Identification of novel insertion-deletion markers for Dongxiang wild rice (Oryza rufipogon griff.) using highthroughput sequencing technology. Journal of Genetics 94: e51e55.CrossRefGoogle Scholar
Zhang, FT, Xu, T, Mao, LY, Yan, SY, Chen, XW, Wu, ZF, Chen, R, Luo, XD, Xie, JK and Gao, S (2016) Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication. BMC Plant Biology 16: 103.CrossRefGoogle ScholarPubMed
Zhang, FT, Zhou, Y, Zhang, M, Luo, XD and Xie, JK (2017) Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon). Bioscience Reports 37: 3.CrossRefGoogle Scholar

Zhang et al. supplementary material

Table S3

File 54 KB

Zhang et al. supplementary material

Figure S1

Image 223 KB

Zhang et al. supplementary material

Zhang et al. supplementary material Table S1

File 40 KB

Zhang et al. supplementary material

Table S2

File 3 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 4
Total number of PDF views: 34 *
View data table for this chart

* Views captured on Cambridge Core between 08th May 2019 - 16th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-fgqm6 Total loading time: 0.232 Render date: 2021-01-16T10:02:09.889Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Jan 16 2021 09:53:28 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Application of SV markers developed from Dongxiang common wild rice in analysis of cultivated rice
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Application of SV markers developed from Dongxiang common wild rice in analysis of cultivated rice
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Application of SV markers developed from Dongxiang common wild rice in analysis of cultivated rice
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *