Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T23:56:01.108Z Has data issue: false hasContentIssue false

Some effects of population density in infections of Diphyllobothrium dendriticum (Nitzsch) in golden hamster (Mesocricetus auratus Waterhouse) and common gull (Larus canus L.)

Published online by Cambridge University Press:  06 April 2009

Odd Halvorsen
Affiliation:
Zoological Museum, University of Oslo, Sars gt. 1, Oslo 5, Norway
Karin Andersen
Affiliation:
Zoological Museum, University of Oslo, Sars gt. 1, Oslo 5, Norway

Extract

Golden hamsters were given plerocercoids of Diphyllobothrium dendriticum either singly or in groups of 2, 4, 8 or 15. There was a higher rate of recovery of worms from hamsters given many (8 and 15) than from those given few (1, 2 or 4) plerocercoids. The difference in rate of recovery of worms was present from 2 h after administration of plerocercoids and persisted up to day 20 when experiments were ended. Denser tapeworm populations had the smallest individuals and some of them contained worms with primary strobilae at the start of egg production. The size of the tapeworm population did not influence the prepatent time. Also, with the common gull there was a higher rate of recovery of worms when plerocercoids were given in groups. These results are discussed in relation to aspects of the life-cycle of D. dendriticum where the natural final host is most probably normally infected by a larger number of plerocercoids at the same time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allee, W. C., Emerson, A. E., Park, O., Park, T. & Schmidt, K. P. (1950). Principles of Animal Ecology. Philadelphia, London: W. B. Saunders.Google Scholar
Andersen, K. (1971). Studies of the helminth fauna of Norway. XVII. Morphological comparison of Diphyllobothrium dendriticum Nitzsch 1824, D. norvegicum Vik 1957 and D. latum (Linné 1758) (Cestoda: Pseudophyllidea). Norwegian Journal of Zoology 19, 2136.Google Scholar
Andersen, K. (1972). Studies of the helminth fauna of Norway. XXI. The influence of population size (intensity of infection) on morphological characters in Diphyllobothrium dendriticum Nitzsch in the Golden Hamster (Mesocrietus auratus Waterhouse). Norwegian Journal of Zoology 20, 17.Google Scholar
Archer, D. M. & Hopkins, C. A. (1958). Studies on cestode metabolism. III. Growth pattern of Diphyllobothrium sp. in a definitive host. Experimental Parasitology 7, 125–44.CrossRefGoogle Scholar
Bråten, T. (1966). Studies of the helminth fauna of Norway. VII. Growth, fecundity and fertility of Diphyllobothrium norvegicum Vik (Cestoda) in the golden hamster. Nytt Magasin for Zoologi 13, 3951.Google Scholar
Crofton, H. D. (1971). A model of host–parasite relationships. Parasitology 63, 343–64.CrossRefGoogle Scholar
Hager, A. (1941). Effects of dietary modification of host rats on the tapeworm Hymenolepis diminuta. Iowa State College Journal of Science 15, 127–53.Google Scholar
Halvorsen, O. (1970). Studies of the helminth fauna of Norway. XV. On the taxonomy and biology of plerocercoids of Diphyllobothrium Cobbold, 1858 (Cestoda, Pseudophyllidea) from northwestern Europe. Nytt Magasin for Zoologi 18, 113–74.Google Scholar
Halvorsen, O. & Williams, H. H. (1968). Studies of the helminth fauna of Norway. IX. Gyrocotyle (Platyhelminthes) in Chimaera monstrosa from Oslo Fjord, with emphasis on its mode of attachment and a regulation in the degree of infection. Nytt Magasin for Zoologi 15, 130–42.Google Scholar
Hunninen, A. V. (1935). Studies on the life history and host–parasite relations of Hymenolepis fraterna (H. nana var. fraterna Stiles) in white mice. American Journal of Hygiene 22, 414–43.Google Scholar
Jones, A. W. & Tan, B. D. (1971). Effect of crowding upon growth and fecundity in the mouse bile duct tapeworm, Hymenolepis microstoma. Journal of Parasitology 57, 8893.CrossRefGoogle Scholar
Kuhlow, F. (1953). Über die Entwiklung und Anatomie von Diphyllobothrium dendriticum Nitzsch 1824. Zeitschrift für Parasitenkunde 16, 135.CrossRefGoogle Scholar
Odum, E. P. (1961). Fundamentals of Ecology. Philadelphia, London: W. B. Saunders.Google Scholar
Read, C. P. (1959). The role of carbohydrates in the biology of cestodes. VIII. Some conclusions and hypotheses. Experimental Parasitology 8, 365–82.CrossRefGoogle ScholarPubMed
Read, C. P. & Simmons, J. E. (1963). Biochemistry and physiology of tapeworms. Physiological Reviews 43, 263305.CrossRefGoogle ScholarPubMed
Roberts, L. S. (1961). The influence of population density on patterns and physiology of growth in Hymenolepis diminuta (Cestoda: Cyclophyllidea) in the definitive host. Experimental Parasitology 11, 332–71.CrossRefGoogle ScholarPubMed
Roberts, L. S. & Mong, F. N. (1968). Developmental physiology of cestodes. III. Development of Hymenolepis diminuta in superinfections. Journal of Parasitology 54, 5562.CrossRefGoogle Scholar
Shorb, D. A. (1933). Host–parasite relations of Hymenolepis fraterna in the rat and the mouse. American Journal of Hygiene 18, 74113.Google Scholar
Smyth, J. D. (1971). Development of monozoic forms of Echinococcus granulosus during in vitro culture. International Journal for Parasitology 1, 121–4.CrossRefGoogle ScholarPubMed
Sverdrup, E. (1964). Lov og tilfeldighet, vols. 1 and 2. Oslo: Universitetsforlaget.Google Scholar
Vik, R. (1957). Studies of the helminth fauna of Norway. I. Taxonomy and ecology of Diphyllobothrium norvegicum n.sp. and the plerocercoid of Diphyllobothrium latum (L.). Nytt Magasin for Zoologi 5, 2893.Google Scholar
Wardle, R. A. & Green, N. K. (1941). The rate of growth of the tapeworm Diphyllobothrium latum (L.). Canadian Journal of Research (D) 19, 245–51.Google Scholar
Wardle, R. A. & McColl, E. L. (1937). The taxonomy of Diphyllobothrium latum (Linné, 1958) in Western Canada. Canadian Journal of Research D 15, 163–75.CrossRefGoogle Scholar
Weinmann, C. J. (1958). Egg-production by Hymenolepis nana var. fraterna and egg infectivity after passage from mice with light, moderate and heavy worm burdens. Journal of Parasitology 44 (4/2), 16.Google Scholar
Williams, H. H. & Halvorsen, O. (1971). The incidence and degree of infection of Gadus morhua L. 1785 with Abothrium gadi Beneden, 1871 (Cestoda: Pseudophyllidea). Norwegian Journal of Zoology 19, 193–9.Google Scholar
Wisniewski, W. L., Szymanik, K. & Bazanska, K. (1959). The formation of a structure in tapeworm populations. Ceskoslovenska Parasitologie 2, 195211.Google Scholar
Woodland, W. N. F. (1924). On the life cycle of Hymenolepis fraterna (H. nana var. fraterna Stiles) in the white mouse. Parasitology 16, 6983.CrossRefGoogle Scholar