Skip to main content Accessibility help
×
Home

The potential of metabolomics for Leishmania research in the post-genomics era

  • RICHARD A. SCHELTEMA (a1), SASKIA DECUYPERE (a2) (a3), RUBEN T'KINDT (a2) (a3), JEAN-CLAUDE DUJARDIN (a2), GRAHAM H. COOMBS (a3) and RAINER BREITLING (a1)...

Summary

The post-genomics era has provided researchers with access to a new generation of tools for the global characterization and understanding of pathogen diversity. This review provides a critical summary of published Leishmania post-genomic research efforts to date, and discusses the potential impact of the addition of metabolomics to the post-genomic toolbox. Metabolomics aims at understanding biology by comprehensive metabolite profiling. We present an overview of the design and interpretation of metabolomics experiments in the context of Leishmania research. Sample preparation, measurement techniques, and bioinformatics analysis of the generated complex datasets are discussed in detail. To illustrate the concepts and the expected results of metabolomics analyses, we also present an overview of comparative metabolic profiles of drug-sensitive and drug-resistant Leishmania donovani clinical isolates.

Copyright

Corresponding author

*Address correspondence to: Rainer Breitling (r.breitling@rug.nl), Tel: +31-50-3638088, Fax: +31-50-3637976.

References

Hide All
Atherton, H. J., Bailey, N. J., Zhang, W., Taylor, J., Major, H., Shockcor, J., Clarke, K. and Griffin, J. L. (2006). A combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-alpha null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiological Genomics 27, 178186. doi: 10.1152/physiolgenomics.00060.2006.
Baxevanis, A. D., Page, R. D., Petsko, G. A., Stein, L. D. and Stormo, G. D. (2002). Current Protocols in Bioinformatics. John Wiley & Sons, Inc., Hoboken, NJ, USA.
Bente, M., Harder, S., Wiesgigl, M., Heukeshoven, J., Gelhaus, C., Krause, E., Clos, J. and Bruchhaus, I. (2003). Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics 3, 18111829. doi: 10.1002/pmic.200300462.
Bocker, S. and Rasche, F. (2008). Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24, i49–55. doi: 10.1093/bioinformatics/btn270.
Breitling, R., Ritchie, S., Goodenowe, D., Stewart, M. L. and Barrett, M. P. (2006). Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data. Metabolomics 2, 155164. doi: 10.1007/s11306-006-0029-z.
Breitling, R., Vitkup, D. and Barrett, M. P. (2008). New surveyor tools for charting microbial metabolic maps. Nature Reviews, Microbiology 6, 156161. doi: 10.1038/nrmicro1797.
Brobey, R. K. B., Mei, F. C., Cheng, X. and Soong, L. (2006). Comparative two-dimensional gel electrophoresis maps for promastigotes of Leishmania amazonensis and Leishmania major. Brazilian Journal of Infectious Diseases: An Official Publication of the Brazilian Society of Infectious Diseases 10, 16. doi: /S1413-86702006000100001.
Chavali, A. K., Whittemore, J. D., Eddy, J. A., Williams, K. T. and Papin, J. A. (2008). Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Molecular Systems Biology 4, 177. doi: 10.1038/msb.2008.15.
Clayton, C. and Shapira, M. (2007). Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Molecular and Biochemical Parasitology 156, 93–101. doi: 10.1016/j.molbiopara.2007.07.007.
Cohen-Freue, G., Holzer, T. R., Forney, J. D. and McMaster, W. R. (2007). Global gene expression in Leishmania. International Journal for Parasitology 37, 10771086. doi: 10.1016/j.ijpara.2007.04.011.
De Souza, D. P., Saunders, E. C., McConville, M. J. and Likic, V. A. (2006). Progressive peak clustering in GC-MS Metabolomic experiments applied to Leishmania parasites. Bioinformatics 22, 13911396. doi: 10.1093/bioinformatics/btl085.
Doyle, M., MacRae, J., De Souza, D., Saunders, E., McConville, M. and Likic, V. (2009). LeishCyc: a biochemical pathways database for Leishmania major. BMC Systems Biology 3, 57. doi: 10.1186/1752-0509-3-57.
Drummelsmith, J., Brochu, V., Girard, I., Messier, N. and Ouellette, M. (2003). Proteome mapping of the protozoan parasite Leishmania and application to the study of drug targets and resistance mechanisms. Molecular and Cellular Proteomics 2, 146155. doi: 10.1074/mcp.M200085-MCP200.
Drummelsmith, J., Girard, I., Trudel, N. and Ouellette, M. (2004). Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance. Journal of Biological Chemistry 279, 3327333280. doi: 10.1074/jbc.M405183200.
Dujardin, J. (2009). Structure, dynamics and function of Leishmania genome: resolving the puzzle of infection, genetics and evolution? Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases 9, 290297. doi: 10.1016/j.meegid.2008.11.007.
Dunn, W. B., Bailey, N. J. C. and Johnson, H. E. (2005). Measuring the metabolome: current analytical technologies. The Analyst 130, 606625.
Dunn, W. B., Broadhurst, D., Brown, M., Baker, P. N., Redman, C. W. G., Kenny, L. C. and Kell, D. B. (2008). Metabolic profiling of serum using Ultra Performance Liquid Chromatography and the LTQ-Orbitrap mass spectrometry system. Journal of Chromatography B 871, 288298. doi: 10.1016/j.jchromb.2008.03.021.
Fadili, K. E., Drummelsmith, J., Roy, G., Jardim, A. and Ouellette, M. (2009). Down regulation of KMP-11 in Leishmania infantum axenic antimony resistant amastigotes as revealed by a proteomic screen. Experimental Parasitology 123, 5157. doi: 10.1016/j.exppara.2009.05.013.
Fahy, E., Sud, M., Cotter, D. and Subramaniam, S. (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Research 35(Web Server issue), W606–612. doi: 10.1093/nar/gkm324.
Faijes, M., Mars, A. and Smid, E. (2007). Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microbial Cell Factories 6, 27. doi: 10.1186/1475-2859-6-27.
Fernie, A. R., Trethewey, R. N., Krotzky, A. J. and Willmitzer, L. (2004). Metabolite profiling: from diagnostics to systems biology. Nature Reviews Molecular Cell Biology 5, 763769. doi: 10.1038/nrm1451.
Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics 2, 155168. doi: 10.1002/cfg.82.
Gibellini, F., Hunter, W. N. and Smith, T. K. (2009). The ethanolamine branch of the Kennedy pathway is essential in the bloodstream form of Trypanosoma brucei. Molecular Microbiology 73, 826843. doi: 10.1111/j.1365-2958.2009.06764.x.
Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G. and Kell, D. B. (2004). Metabolomics by numbers: acquiring and understanding global metabolite data. Trends in Biotechnology 22, 245252. doi: 10.1016/j.tibtech.2004.03.007.
Guerbouj, S., Victoir, K., Guizani, I., Seridi, N., Nuwayri-Salti, N., Belkaid, M., Ismail, R. B., Le Ray, D. and Dujardin, J. C. (2001). Gp63 gene polymorphism and population structure of Leishmania donovani complex: influence of the host selection pressure? Parasitology 122, 2535.
Guimond, C., Trudel, N., Brochu, C., Marquis, N., Fadili, A. E., Peytavi, R., Briand, G., Richard, D., Messier, N., Papadopoulou, B., Corbeil, J., Bergeron, M. G., Legare, D. and Ouellette, M. (2003). Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Research 31, 58865896. doi: 10.1093/nar/gkg806.
Hall, N. (2007). Advanced sequencing technologies and their wider impact in microbiology. Journal of Experimental Biology 210, 15181525. doi: 10.1242/jeb.001370.
Han, J., Danell, R., Patel, J., Gumerov, D., Scarlett, C., Speir, J., Parker, C., Rusyn, I., Zeisel, S. and Borchers, C. (2008). Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics 4, 128140. doi: 10.1007/s11306-008-0104-8.
Hardman, M. and Makarov, A. A. (2003). Interfacing the orbitrap mass analyzer to an electrospray ion source. Analytical Chemistry 75, 16991705.
Holzer, T. R., McMaster, W. and Forney, J. D. (2006). Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Molecular and Biochemical Parasitology 146, 198218. doi: 10.1016/j.molbiopara.2005.12.009.
Inga, R., Doncker, S. D., Gomez, J., Lopez, M., Garcia, R., Ray, D. L., Arevalo, J. and Dujardin, J. (1998). Relation between variation in copy number of ribosomal RNA encoding genes and size of harbouring chromosomes in Leishmania of subgenus Viannia. Molecular and Biochemical Parasitology 92, 219228. doi: 10.1016/S0166-6851(98)00009-7.
Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N., Bauser, C., Beck, A., Beverley, S. M., Bianchettin, G., Borzym, K., Bothe, G., Bruschi, C. V., Collins, M., Cadag, E., Ciarloni, L., Clayton, C., Coulson, R. M. R., Cronin, A., Cruz, A. K., Davies, R. M., De Gaudenzi, J., Dobson, D. E., Duesterhoeft, A., Fazelina, G., Fosker, N., Frasch, A. C., Fraser, A., Fuchs, M., Gabel, C., Goble, A., Goffeau, A., Harris, D., Hertz-Fowler, C., Hilbert, H., Horn, D., Huang, Y., Klages, S., Knights, A., Kube, M., Larke, N., Litvin, L., Lord, A., Louie, T., Marra, M., Masuy, D., Matthews, K., Michaeli, S., Mottram, J. C., Müller-Auer, S., Munden, H., Nelson, S., Norbertczak, H., Oliver, K., O'Neil, S., Pentony, M., Pohl, T. M., Price, C., Purnelle, B., Quail, M. A., Rabbinowitsch, E., Reinhardt, R., Rieger, M., Rinta, J., Robben, J., Robertson, L., Ruiz, J. C., Rutter, S., Saunders, D., Schäfer, M., Schein, J., Schwartz, D. C., Seeger, K., Seyler, A., Sharp, S., Shin, H., Sivam, D., Squares, R., Squares, S., Tosato, V., Vogt, C., Volckaert, G., Wambutt, R., Warren, T., Wedler, H., Woodward, J., Zhou, S., Zimmermann, W., Smith, D. F., Blackwell, J. M., Stuart, K. D., Barrell, B. and Myler, P. J. (2005). The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436442. doi: 10.1126/science.1112680.
Kamleh, A., Barrett, M. P., Wildridge, D., Burchmore, R. J. S., Scheltema, R. A. and Watson, D. G. (2008). Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: a method with wide applicability to analysis of biomolecules. Rapid Communications in Mass Spectrometry 22, 19121918. doi: 10.1002/rcm.3564.
Kanehisa, M., Goto, S., Kawashima, S. and Nakaya, A. (2002). The KEGG databases at GenomeNet. Nucleic Acids Research 30, 4246.
Kell, D. and Westerhoff, H. (1986). Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiology Letters 39, 305320. doi: 10.1111/j.1574-6968.1986.tb01863.x.
Kell, D. B. (2004). Metabolomics and systems biology: making sense of the soup. Current Opinion in Microbiology 7, 296307. doi: 10.1016/j.mib.2004.04.012.
Keller, B. O., Sui, J., Young, A. B. and Whittal, R. M. (2008). Interferences and contaminants encountered in modern mass spectrometry. Analytica Chimica Acta 627, 7181. doi: 10.1016/j.aca.2008.04.043.
Leifso, K., Cohen-Freue, G., Dogra, N., Murray, A. and McMaster, W. R. (2007). Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: The Leishmania genome is constitutively expressed. Molecular and Biochemical Parasitology 152, 3546. doi: 10.1016/j.molbiopara.2006.11.009.
Leprohon, P., Legare, D., Raymond, F., Madore, E., Hardiman, G., Corbeil, J. and Ouellette, M. (2009). Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Research 37, 13871399. doi: 10.1093/nar/gkn1069.
Lu, X., Zhao, X., Bai, C., Zhao, C., Lu, G. and Xu, G. (2008). LC-MS-based metabonomics analysis. Journal of Chromatography B 866, 6476. doi: 10.1016/j.jchromb.2007.10.022.
McConville, M. J., de Souza, D., Saunders, E., Likic, V. A. and Naderer, T. (2007). Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends in Parasitology 23, 368375. doi: 10.1016/j.pt.2007.06.009.
McDonagh, P. D., Myler, P. J. and Stuart, K. (2000). The unusual gene organization of Leishmania major chromosome 1 may reflect novel transcription processes. Nucleic Acids Research 28, 28002803. doi: 10.1093/nar/28.14.2800.
McNicoll, F., Drummelsmith, J., Müller, M., Madore, É., Boilard, N., Ouellette, M. and Papadopoulou, B. (2006). A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics 6, 35673581. doi: 10.1002/pmic.200500853.
Morozova, O. and Marra, M. A. (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics 92, 255264. doi: 10.1016/j.ygeno.2008.07.001.
Ouellette, M., Ubeda, J., Leprohon, P., Mukherjee, A., Brotherton, C., Moreira, W., Coelho, A. and Raymond, F. (2009). Whole genome analysis of drug resistance in Leishmania. In Abstracts World Conference Leishmaniasis 4.
Pasikanti, K. K., Ho, P. and Chan, E. (2008). Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. Journal of Chromatography B 871, 202211. doi: 10.1016/j.jchromb.2008.04.033.
Peacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M., Carver, T., Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., Ormond, D., Rutter, S., Squares, R., Whitehead, S., Rabbinowitsch, E., Arrowsmith, C., White, B., Thurston, S., Bringaud, F., Baldauf, S. L., Faulconbridge, A., Jeffares, D., Depledge, D. P., Oyola, S. O., Hilley, J. D., Brito, L. O., Tosi, L. R. O., Barrell, B., Cruz, A. K., Mottram, J. C., Smith, D. F. and Berriman, M. (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature Genetics 39, 839847. doi: 10.1038/ng2053.
Rochette, A., Raymond, F., Ubeda, J., Smith, M., Messier, N., Boisvert, S., Rigault, P., Corbeil, J., Ouellette, M. and Papadopoulou, B. (2008). Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics 9, 255. doi: 10.1186/1471-2164-9-255.
Rogers, S., Scheltema, R. A., Girolami, M. and Breitling, R. (2009). Probabilistic assignment of formulas to mass peaks in metabolomics experiments. Bioinformatics 25, 512518. doi: 10.1093/bioinformatics/btn642.
Rosenzweig, D., Smith, D., Opperdoes, F., Stern, S., Olafson, R. W. and Zilberstein, D. (2008). Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB Journal 22, 590602. doi: 10.1096/fj.07-9254com.
Salotra, P., Duncan, R. C., Singh, R., Raju, B. S., Sreenivas, G. and Nakhasi, H. L. (2006). Upregulation of surface proteins in Leishmania donovani isolated from patients of post kala-azar dermal leishmaniasis. Microbes and Infection 8, 637644. doi: 10.1016/j.micinf.2005.08.018.
Saxena, A., Lahav, T., Holl, N., Aggarwal, G., Anupama, A., Huang, Y., Volpin, H., Myler, P. and Zilberstein, D. (2007). Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Molecular and Biochemical Parasitology 152, 5365. doi: 10.1016/j.molbiopara.2006.11.011.
Sellick, C. A., Hansen, R., Maqsood, A. R., Dunn, W. B., Stephens, G. M., Goodacre, R. and Dickson, A. J. (2009). Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells. Analytical Chemistry 81, 174183. doi: 10.1021/ac8016899.
Sharma, S., Singh, G., Chavan, H. D. and Dey, C. S. (2003). Proteomic analysis of wild type and arsenite-resistant Leishmania donovani. Experimental Parasitology 123, 369376. doi: 10.1016/j.exppara.2009.08.003.
Singh, G., Chavan, H. D. and Dey, C. S. (2008). Proteomic analysis of miltefosine-resistant Leishmania reveals the possible involvement of eukaryotic initiation factor 4A (eIF4A). International Journal of Antimicrobial Agents 31, 584586. doi: 10.1016/j.ijantimicag.2008.01.032.
Singh, N., Almeida, R., Kothari, H., Kumar, P., Mandal, G., Chatterjee, M., Venkatachalam, S., Govind, M. K., Mandal, S. K. and Sundar, S. (2007). Differential gene expression analysis in antimony-unresponsive Indian kala azar (visceral leishmaniasis) clinical isolates by DNA microarray. Parasitology 134, 777787. doi: 10.1017/S0031182007002284.
Smith, C. A., O'Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., Custodio, D. E., Abagyan, R. and Siuzdak, G. (2005). METLIN: a metabolite mass spectral database. Therapeutic Drug Monitoring 27, 747751.
Smith, D. F., Peacock, C. S. and Cruz, A. K. (2007). Comparative genomics: from genotype to disease phenotype in the leishmaniases. International Journal for Parasitology 37, 11731186. doi: 10.1016/j.ijpara.2007.05.015.
Srividya, G., Duncan, R., Sharma, P., Raju, B. V. S., Nakhasi, H. L. and Salotra, P. (2007). Transcriptome analysis during the process of in vitro differentiation of Leishmania donovani using genomic microarrays. Parasitology 134, 15271539. doi: 10.1017/S003118200700296X.
Sturm, N. R., Martinez, L. I. T. and Thomas, S. (2008). Kinetoplastid genomics: The thin end of the wedge. Infection, Genetics and Evolution 8, 901906. doi: 10.1016/j.meegid.2008.07.001.
Tautenhahn, R., Böttcher, C. and Neumann, S. (2007). Annotation of LC/ESI-MS Mass Signals. In Bioinformatics Research and Development. (ed. Hochreiter, S. and Wagner, R.), pp. 371380. Springer-Verlag, Heidelberg, Germany.
Ubeda, J., Legare, D., Raymond, F., Ouameur, A., Boisvert, S., Rigault, P., Corbeil, J., Tremblay, M., Olivier, M., Papadopoulou, B. and Ouellette, M. (2008). Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biology 9, R115. doi: 10.1186/gb-2008-9-7-r115.
van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L. and Hankemeier, T. (2007). Microbial metabolomics: toward a platform with full metabolome coverage. Analytical Biochemistry 370, 1725. doi: 10.1016/j.ab.2007.07.022.
Vergnes, B., Gourbal, B., Girard, I., Sundar, S., Drummelsmith, J. and Ouellette, M. (2007). A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Molecular and Cellular Proteomics 6, 88–101. doi: 10.1074/mcp.M600319-MCP200.
Victoir, K., Dujardin, J. C., de Doncker, S., Barker, D. C., Arevalo, J., Hamers, R. and Le Ray, D. (1995). Plasticity of gp63 gene organization in Leishmania (Viannia) braziliensis and Leishmania (Viannia) peruviana. Parasitology 111, 265273.
Villas-Bôas, S. G. and Bruheim, P. (2007). Cold glycerol-saline: The promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Analytical Biochemistry 370, 8797. doi: 10.1016/j.ab.2007.06.028.
Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J. and Bryant, S. H. (2009). PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Research 37, W623–633. doi: 10.1093/nar/gkp456.
Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M. and Goodacre, R. (2008). Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Analytical Chemistry 80, 29392948. doi: 10.1021/ac7023409.
Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P., Amegbey, G., Block, D., Hau, D. D., Wagner, J., Miniaci, J., Clements, M., Gebremedhin, M., Guo, N., Zhang, Y., Duggan, G. E., MacInnis, G. D., Weljie, A. M., Dowlatabadi, R., Bamforth, F., Clive, D., Greiner, R., Li, L., Marrie, T., Sykes, B. D., Vogel, H. J. and Querengesser, L. (2007). HMDB: the human metabolome database. Nucleic Acids Research 35 (Database issue), D521–526. doi: 10.1093/nar/gkl923.
Wittmann, C., Krömer, J. O., Kiefer, P., Binz, T. and Heinzle, E. (2004). Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Analytical Biochemistry 327, 135139. doi: 10.1016/j.ab.2004.01.002.

Keywords

The potential of metabolomics for Leishmania research in the post-genomics era

  • RICHARD A. SCHELTEMA (a1), SASKIA DECUYPERE (a2) (a3), RUBEN T'KINDT (a2) (a3), JEAN-CLAUDE DUJARDIN (a2), GRAHAM H. COOMBS (a3) and RAINER BREITLING (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed