Skip to main content Accessibility help

Morita-Baylis-Hillman adduct shows in vitro activity against Leishmania (Viannia) braziliensis associated with a reduction in IL-6 and IL-10 but independent of nitric oxide

  • F. M. AMORIM (a1) (a2), Y. K. S. RODRIGUES (a1) (a2), T. P. BARBOSA (a3), P. L. N. NÉRIS (a2) (a4), J. P. A. CALDAS (a2) (a4), S. C. O. SOUSA (a3), J. A. LEITE (a4) (a5), S. RODRIGUES-MASCARENHAS (a4) (a5), M. L. A. A. VASCONCELLOS (a3) and M. R. OLIVEIRA (a1) (a2) (a4)...


Current treatments for different clinical forms of leishmaniasis are unsatisfactory, highly toxic and associated with increasing failure rates resulting from the emergence of resistant parasites. Leishmania (Viannia) braziliensis is the main aetiological agent of different clinical forms of American tegumentary leishmaniasis, including the mucosal form for which treatment has high failure rates. The aim of this work was to investigate the activity of the Morita-Baylis-Hillman adduct, methyl 2-{2-[hydroxy(2-nitrophenyl)methyl])acryloyloxy} benzoate in vitro against isolates of L. (V.) braziliensis obtained from patients with different clinical manifestations of tegumentary leishmaniasis: localized cutaneous leishmaniasis, mucosal leishmaniasis and disseminated cutaneous leishmaniasis. The adduct effectively inhibited the growth of promastigotes of the different isolates of L. (V.) braziliensis (IC50 ⩽ 7·77 μg/ml), as well as reduced the infection rate of macrophages infected with these parasites (EC50 ⩽ 1·37 μg/ml). It is remarkable to state that the adduct was more effective against intracellular amastigotes (P ⩽ 0·0045). The anti-amastigote activity correlated with an immunomodulatory effect, since the adduct was able to decrease the production of IL-6 and IL-10 by the infected macrophages. However, its effect was independent of nitric oxide production. This work demonstrates the anti-leishmanial activity of methyl 2-{2-[hydroxy(2-nitrophenyl)methyl])acryloyloxy} benzoate and suggests its potential in the treatment of human infections caused by L. (V.) braziliensis.


Corresponding author

*Corresponding author: Laboratório Biologia de Leishmania, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, Castelo Branco, João Pessoa, Paraíba, Brasil, CEP 58059-900. Tel: +55 83 3216 7436. E-mail:


Hide All
Astelbauer, F. and Walochnik, J. (2011). Antiprotozoal compounds: state of the art and developments. International Journal of Antimicrobial Agents 38, 118124. doi: 10.1016/j.ijantimicag.2011.03.004.
Barbosa, T. P., Junior, C. G. L., Silva, F. L., Lopes, H. M., Figueiredo, L. R. F., Sousa, S. C. O., Batista, G. N., Silva, T. G., Silva, T. M. S., Oliveira, M. R. and Vasconcellos, M. L. A. A. (2009). Improved synthesis of seven aromatic Baylis-Hillman adducts (BHA): Evaluation against Artemia salina Leach and Leishmania chagasi. European Journal of Medicinal Chemistry 44, 4, 17261730. doi: 10.1016/j.ejmech.2008.03.016.
Barbosa, T. P., Sousa, S. C., Amorim, M. F., Rodrigues, Y. K. S., Assis, P. A. C., Caldas, J. P. A., Oliveira, M. R. and Vasconcellos, M. L. A. A. (2011). Design, synthesis and antileishmanial in vitro activity of new series of chalcones-like compounds: a molecular hybridization approach. Bioorganic and Medicinal Chemistry 19, 42504256. doi: 10.1016/j.bmc.2011.05.055.
Basavaiah, D., Rao, K. V. and Reddy, R. J. (2007). The Baylis–Hillman reaction: a novel source of attraction, opportunities, and challenges in synthetic chemistry. Chemical Society Reviews 36, 15811588. doi: 10.1039/B613741P.
Baud, V. and Karin, M. (2001). Signal transduction by tumor necrosis factor and its relatives. Trends in Cell Biology 11, 372377. doi: 10.1016/S0962-8924(01)02064-5.
Boeck, P., Falcão, C. A. B., Leal, P. C., Yunes, R. A., Filho, V. C., Torres-Santos, E. C. and Rossi-Bergmann, B. (2006). Synthesis of chalcone analogues with increased antileishmanial activity. Bioorganic and Medicinal Chemistry 14, 15381545. doi: 10.1016/j.bmc.2005.10.005.
Bogdan, C. (2001). Nitric oxide and immune response. Nature Immunology 2, 907916. doi: 10.1038/ni1001-907.
Bogdan, C. and Röllinghoff, M. (1998). The immune response to Leishmania: mechanisms of parasite control and evasion. International Journal for Parasitology 28, 121134.
Bruijn, M. H. L. and Barker, D. C. (1992). Diagnosis of New World Leishmaniasis: specific detection of species of the Leishmania braziliensis complex by amplification of kinetoplast DNA. Acta Tropica 52, 4558. doi: 10.1016/0001-706X(92)90006-J.
Campos, M. B., Gomes, C. M. C., De Souza, A. A. A., Laison, R., Corbett, C. E. P. and Silveira, F. T. (2008). In vitro infectivity of species of Leishmania (Viannia) responsible for American cutaneous leishmaniasis. Parasitology Research 103, 771776. doi: 10.1007/s00436-008-1039-8.
Carvalho, E. M., Barral, A., Costa, J. M., Bittencourt, A. and Marsden, P. (1994). Clinical and immunopathological aspects of disseminated cutaneous leishmaniasis. Acta Tropica 56, 315325. doi: 10.1016/0001-706X(94)90103-1.
Couper, K. N., Blount, D. G. and Riley, E. M. (2008). IL-10: The master regulator of immunity to infection. The Journal of Immunology 180, 57715777.
Croft, S. L., Sundar, S. and Fairlamb, A. H. (2006). Drug resistance in leishmaniasis. Clinical Microbiology Reviews 19, 111126. doi: 10.1128/CMR.19.1.111-126.2006.
Decuypere, S., Rijal, S., Yardley, V., De Doncker, S., Laurent, T., Khanal, B., Chappuis, F. and Dujardin, J. C. (2005). Gene expression analysis of the mechanism of natural Sb (V) resistance in Leishmania donovani isolates from Nepal. Antimicrobial Agents and Chemotherapy 49, 46164621. doi: 10.1128/AAC.49.11.4616-4621.2005.
Denton, H., McGregor, J. C. and Coombs, G. H. (2004). Reduction of antileishmanial pentavalent antimonial drugs by parasite-specific thiol-dependent redutase, TDR1. Biochemistry Journal 381, 405412. doi: 10.1042/BJ20040283.
De Paiva, Y. G., Souza, A. A., Lima-Junior, C. G., Silva, F. P. L., Filho, E. B. A., De Vasconcelos, C. C., De Abreu, F. C., Goulart, M. O. F. and Vasconcellos, M. L. A. A. (2012). Correlation between electrochemical and theoretical studies on the leishmanicidal activity of twelve Morita-Baylis-Hillman adducts. Journal of the Brazilian Chemical Society 23, 5, 894904.
De Souza, R. O. M. A., Pereira, V. L. P., Muzitano, M. F., Falcão, C. A. B., Rossi-Bergmann, B., Filho, E. B. A. and Vasconcellos, M. L. A. A. (2007). High selective leishmanicidal activity of 3-hydroxy-2methylene-3-(4-bromophenyl)propanenitrile and analogous compounds. European Journal of Medicinal Chemistry 42, 99102. doi: 10.106/j.ejmech.2006.07.013.
Diehl, S., Anguita, J., Hoffmeyer, A., Zapton, T., Ihle, J. N., Fikrig, E. and Rincón, M. (2000). Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity 13, 805815.
Dos Santos, R. A. N., Júnior, J. B., Rosa, S. I. G., Torquato, H. F., Bassi, C. L., Ribeiro, T. A. N., Júnior, P. T. S., Bessera, S. A. M. S., Fontes, C. J. F., Da Silva, L. E. and Piuvezam, M. R. (2011). Leishmanicidal effect of Spiranthera adoratissima (Rutacea) and its isolated alkaloid skimmianine occurs by nitric oxide dependent mechanism. Parasitology 138, 12241233. doi: 10.1017/S0031182011001168.
Dube, A., Singh, N., Sundar, S. and Singh, N. (2005). Refractoriness to the treatment of sodium stibogluconate in Indian kala-azar field isolates persist in in vitro and in vivo experimental models. Parasitology Research 96, 216223. doi: 10.1007/s00436-005-1339-1.
Ephros, M., Bitnun, A., Shaked, P., Waldman, E. and Zilberstein, D. (1999). Stage-specific activity of pentavalent against Leishmania donovani axenic amastigotes. Antimicrobial Agents and Chemotherapy 43, 278282.
Frézard, F., Demicheli, C. and Ribeiro, R. R. (2009). Pentavalent antimonials: new perspectives for old drugs. Molecules 14, 23172336. doi: 10.3390/molecules14072317.
Gantt, K. R., Goldman, T. L., Miller, M. A., McCormick, M. L., Miller, M. A., Jeronimo, S. M. B., Nascimento, E. T., Britigan, B. E. and Wilson, M. E. (2001). Oxidative response of human and murine macrophages during phagocytosis of Leishmania chagasi. Journal of Immunology 167, 893901.
Goto, H. and Lindoso, J. A. L. (2010). Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expert Review of Anti-infective Therapy 8, 4, 419433. doi: 10.1586/eri.10.19.
Goto, H. and Lindoso, J. A. L. (2012). Cutaneous and mucocutaneous leishmaniasis. Infectious Disease Clinics of North America 26, 293307. doi: 10.1016/j.idc.2012.03.001.
Gourbal, B., Sonuc, N., Bhattacharjee, H., Legare, D., Sundar, S., Oullette, M., Rosen, B. P. and Mukhopadhyay, R. (2004). Drug uptake and modulation of drug resistance in Leishmania by aquaglyceroporin*. The Journal of Biological Chemistry 279, 3101331017. doi: 10.1074/jbc.M403959200.
Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S. and Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite and [15N] nitrite in biological fluids. Analytical Biochemistry 126, 131138.
Hatzigeorgiou, D. E., He, S., Sobel, J., Grabstein, K. H., Hafner, A. and Ho, J. (1993). L. IL-6 down-modulates the cytokine-enhanced antileishmanial activity in human macrophages. The Journal of Immunology 151, 36823691.
Liew, F. Y., Li, Y. and Millot, S. (1990). Tumour necrosis factor (TNF-α) in leishmaniasis. II TNF-α induced macrophage leishmanicidal activity is mediated by nitric oxide from L-arginine. Immunology 71, 556559.
Oliveira, M. R., Tafuri, W. L., Afonso, L. C. C., Oliveira, M. A. P., Nicoli, J. R., Vieira, E. C., Scott, P., Melo, M. N. and Vieira, L. Q. (2005). Germ-free mice produce high levels of interferon-gamma in response to infection with Leishmania major but fail to heal lesions. Parasitology 131, 477488. doi: 10.1017/S0031182005008073.
Polonio, T. and Efferth, T. (2008). Leishmaniasis: Drug resistance and natural products (Review). International Journal of Molecular Medicine 22, 277286. doi: 10.3892/ijmm_00000020.
Rincón, M., Anguita, J., Nakamura, T., Firkrig, E. and Flavell, R. A. (1997). IL-6 directs the differentiation of IL-4 producing CD4+T cells. The Journal of Experimental Medicine 185, 461469. doi: 10.1084/jem.185.3.46.
Sacks, D. and Noben-Trauth, N. (2002). The immunology of susceptibility and resistance to Leishmania major in mice. Nature Reviews Immunology 2, 845858. doi: 10.1038/nri933.
Santos, D. O., Coutinho, C. E. R., Madeira, M. F., Bottino, C. G., Vieira, R. T., Nascimento, S. B., Bernadino, A., Bourguignon, S. C., Corte-Real, S., Pinho, R. T., Rodrigues, C. R. and Castro, H. C. (2008). Leishmaniasis treatment – a challenge that remains: a review. Parasitology Research 103, 110. doi: 10.1007/s00436-008-0943-2.
Silva, F. P. L., Assis, P. A. C., Junior, C. G., Andrade, N. G., Cunha, S. M. D., Oliveira, M. R. and Vasconcellos, M. L. A. A. (2011). Synthesis, evaluation against Leishmania amazonensis and cytotoxicity assays in macrophages of sixteen new congeners Morita–Baylis–Hillman adducts. European Journal of Medicinal Chemistry 46, 42954301. doi: 10.1016/j.ejmech.2011.06.036.
Silveira, F. T., Müller, S. R., De Souza, A. A. A., Laison, R., Gomes, C. M. C., Laurenti, M. D. and Corbett, C. E. P. (2008). Revisão sobre a patogenia da leishmaniose tegumentar americana na Amazônia, com ênfase à doença causada por L. (V.) braziliensis e L. (L.) amazonensis. Revista Paraense de Medicina 22, 919.
Sundar, S. and Chackavarty, J. (2010). Antimony toxicity. International Journal of Environmental Research and Public Health 7, 42674277. doi: 10.3390/ijerph7124267.
Tuon, F. F., Amato, V. S., Graf, M. E., Siqueira, A. M., Nicodemo, A. C. and Neto, V. A. (2008). Treatment of New World cutaneous leishmaniasis – a systematic review with a meta-analysis. International Journal of Dermatology 47, 109124. doi: 10.1111/j.1365-4632.2008.03417.x.
Vermeersch, M., Da Luz, R. I., Toté, K., Timmermans, J. P., Cos, P. and Maes, L. (2009). In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrobial Agents and Chemotherapy 53, 38553859. doi: 10.1128/AAC.00548-09.
Vieth, M., Will, A., Schröppel, K., Röllinghoff, M. and Gessner, A. (1994). Interleukin-10 inhibits antimicrobial activity against Leishmania major in murine macrophages. Scandinavian Journal of Immunology 40, 403409. doi: 10.1111/j.1365-3083.1994.tb03481.x.
Vila-del Sol, V., Díaz-Munöz, M. D. and Fresno, M. (2007). Requirement of tumor necrosis factor α and nuclear factor-ΚB in the induction by IFN-γ of inducible nitric oxide synthase in macrophages. Journal of Leukocyte Biology 31, 272283. doi: 10.1189/jlb.0905529.
Vouldoukis, I., Bécherel, P. A., Riveros-Moreno, V., Arock, M., Da Silva, O., Debré, P., Mazier, D. and Mossalayi, M. D. (1997). Interleukin-10 and interleukin-4 inhibit intracellular killing of Leishmania infantum and Leishmania major by human macrophages by decreasing nitric oxide generation. European Journal of Immunology 27, 860865. doi: 10.1002/eji.1830270409.
World Health Organization (2010). Control of the Leishmaniasis. WHO Technical Report Series No. 949. World Health Organization, Geneva, Switzerland.


Morita-Baylis-Hillman adduct shows in vitro activity against Leishmania (Viannia) braziliensis associated with a reduction in IL-6 and IL-10 but independent of nitric oxide

  • F. M. AMORIM (a1) (a2), Y. K. S. RODRIGUES (a1) (a2), T. P. BARBOSA (a3), P. L. N. NÉRIS (a2) (a4), J. P. A. CALDAS (a2) (a4), S. C. O. SOUSA (a3), J. A. LEITE (a4) (a5), S. RODRIGUES-MASCARENHAS (a4) (a5), M. L. A. A. VASCONCELLOS (a3) and M. R. OLIVEIRA (a1) (a2) (a4)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed