Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T09:17:53.676Z Has data issue: false hasContentIssue false

Inhibitory, opsonic and cytotoxic activities of monoclonal antibodies against asexual erythrocytic stages of Plasmodium falciparum

Published online by Cambridge University Press:  06 April 2009

J. L. Li
Affiliation:
Department of Malaria Research, The First Medical College of PLA, Guangzhou, People's Republic of China
Y. J. Li
Affiliation:
Department of Malaria Research, The First Medical College of PLA, Guangzhou, People's Republic of China

Summary

A range of monoclonal antibodies specific for Plasmodium falciparum were tested in vitro for their abilities to inhibit the multiplication of a partially synchronized culture of P. falciparum, to augment the phagocytosis of the parasites by macrophages, and to enhance the killing of parasites by peritoneal cells depleted of adherent cells. Seven of 17 monoclonal antibodies, ranging from culture supernatant fluid and ascitic fluid to purified IgG, showed dose- and time-dependent inhibition of parasite growth in vitro. At a concentration of 0·6 mg/ml, the inhibitory capacity of these monoclonal IgGs was above 94% over a 3-day culture period, much higher than that of the relevant polyclonal IgG. Four of 6 monoclonal antibodies tested augmented the phagocytosis of the parasites by macrophages, which occurred as a result of opsonization of the parasites. Four of 7 monoclonal antibodies examined showed cytotoxic activity on malaria parasites. Peritoneal cells depleted of adherent cells were capable of killing the parasites in the presence of monoclonal antibodies. These results indicate that there may be ‘monofunction’, ‘bifunction’, and ‘multifunction’ types of monoclonal antibodies against P. falciparum. The putative protective antigen of malaria parasites purified by ‘multifunctional monoclonal antibody’ affinity chromatography may have potential interest as a vaccine against the parasite or as an immunodiagnostic reagent for human malaria.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, J. & Greenwood, M. E. (1985). Cellular and humoral inhibition of Plasmodium falciparum growth in vitro and recovery from acute malaria. Parasite Immunology 7, 265–75.Google Scholar
Brown, J. & Smalley, M. E. (1980). Specific antibody-dependent cellular cytotoxicity in human malaria. Clinical and Experimental Immunology 41, 423–9.Google Scholar
Brown, N. K. & Hills, L. A. (1974). Antigenic variation and immunity to Plasmodium knowlesi: antibodies which induce antigenic variation and antibodies which destroy parasites. Transactions of the Royal Society of Tropical Medicine and Hygiene 68, 139–42.CrossRefGoogle ScholarPubMed
Celada, A., Cruchaud, A. & Perrin, L. H. (1982). Opsonic activity of human immune serum on in vitro phagocytosis of Plasmodium falciparum infected red blood cells by monocytes. Clinical and Experimental Immunology 47, 635–44.Google ScholarPubMed
Celada, A., Cruchaud, A. & Perrin, L. H. (1983). Phagocytosis of Plasmodium falciparum-parasitized erythrocytes by human polymorphonuclear leukocytes. Journal of Parasitology 69, 4553.Google Scholar
Chow, J. S. & Kreier, J. P. (1972). Plasmodium berghei: adherence and phagocytosis by rat macrophages in vitro. Experimental Parasitology 31, 1318.CrossRefGoogle ScholarPubMed
Chulay, J. D., Haynes, J. D. & Diggs, C. L. (1981). Inhibition of in vitro growth of Plasmodium falciparum by immune serum from monkeys. Journal of Infectious Diseases 144, 270–8.Google Scholar
Cohen, S. & Butcher, G. A. (1970). Properties of protective malaria antibody. Immunology 19, 298305.Google Scholar
Cohen, S., Butcher, G. A. & Crandall, R. B. (1969). Action of malarial antibody in vitro. Nature, London 223, 368–72.CrossRefGoogle ScholarPubMed
Coleman, R. M., Rencricca, N. J., Stout, J. P., Brissette, W. H. & Smith, D. M. (1975). Splenic mediated erythrocyte cytotoxicity in malaria. Immunology 29, 4954.Google Scholar
Criswell, B. S., Butler, W. T., Tossen, R. D. & Knight, V. (1971). Murine malaria: the role of humoral factors and macrophages in destruction of parasitized erythrocytes. Journal of Immunology 107, 212–21.CrossRefGoogle ScholarPubMed
Deans, J. A., Alderson, T., Thomas, A. W., Mitchell, G. H., Lennox, E. S. & Cohen, S. (1982). Rat monoclonal antibodies which inhibit in vitro multiplication of Plasmodium knowlesi. Clinical and Experimental Immunology 49, 297309.Google Scholar
Epstein, N., Miller, L. H., Aikawa, M. & Hess, R. E. (1981). Monoclonal antibodies against a specific surface determinant of malarial (Plasmodium knowlesi) merozoites block erythrocyte invasion. Journal of Immunology 127, 212–17.Google Scholar
Gao, M. X., Li, Y. H., Han, S. M., Li, W. C., Qiang, L. Y. & Chen, Z. R. (1983). Screening and characterization of monoclonal antibodies against Plasmodium falciparum merozoites. Chinese Journal of Microbiology and Immunology 3, 711.Google Scholar
Golenser, D. F., Miller, J., Avraham, H. & Spira, D. T. (1983). The inhibitory effect of human immune sera upon the in vitro development of Plasmodium falciparum. Tropical and Geographical Medicine 35, 1520.Google Scholar
Green, T. J. & Kreier, J. P. (1978). Demonstration of the role of cytophilic antibody in resistance to malaria parasites (Plasmodium berghei) in rats. Infection and Immunity 19, 138–45.Google Scholar
Greenwood, B. M., Oduloju, A. J. & Stratton, D. (1977). Lymphocyte changes in acute malaria. Transaction of the Royal Society of Tropical Medicine and Hygiene 71, 408–10.CrossRefGoogle ScholarPubMed
Hunter, K. W., Winkelstein, J. A. & Simpson, T. W. (1979). Serum opsonic activity in rodent malaria: functional and immunochemical characteristics in vitro. Journal of Immunology 123, 2582–7.Google Scholar
Khusmith, S. & Druilhe, P. (1983). Antibody-dependent ingestion of P. falciparum merozoites by human blood monocytes. Parasite Immunology 5, 357–68.CrossRefGoogle ScholarPubMed
Khusmith, S., Druilhe, P. & Gentilini, M. (1982). Enhanced Plasmodium falciparum merozoite phagocytosis by monocytes from immune individuals. Infection and Immunity 35, 874–7.CrossRefGoogle ScholarPubMed
Köhler, G. & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of defined specificity. Nature, London 256, 495–7.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.Google Scholar
Lambros, C. & Vanderberg, J. P. (1979). Synchronization of Plasmodium falciparum erythrocytic stages in cultures. Journal of Parasitology 65, 418–20.CrossRefGoogle Scholar
Li Shen, Lydyard, P. M., Penfold, P. & Roitt, I. M. (1979). Evidence of antibody-dependent cell-mediated cytotoxicity by T cells bearing receptors for IgG. Clinical and Experimental Immunology 35, 276–85.Google Scholar
Li, Y. J., Chao, S., Ouyang, M. H., Liu, Y. & Huang, Y. (1985). Studies on the monoclonal antibodies against Plasmodium falciparum. Journal of Parasitology and Parasitic Diseases 3, 259–61.Google ScholarPubMed
Lima-Martins, M. V. C., Sanchez, G. A., Krettli, A. U. & Brener, Z. (1985). Antibody-dependent cell cytotoxicity against Trypanosoma cruzi is only mediated by protective antibodies. Parasite Immunology 7, 376–67.Google Scholar
Ma, G., Liu, Y. F. & Li, Y. J. (1981). Experimental studies on malaria antibody in immunized monkeys with indirect fluorescent antibody technique. Microbiology 8, 6971.Google Scholar
McDonald, V. & Phillips, R. S. (1978). Increase in non-specific antibody mediated cytotoxicity in malarious mice. Clinical and Experimental Immunology 34, 159–63.Google Scholar
Michel, J.-C., Fandeur, T., Dubois, P. & Pereira da Silva, L. (1983). Opsonic activity of ascitic fluids from Plasmodium falciparum infected saimiri monkey: positive correlation with protection in passive transfer assay. Annales d'Immunologie 134, 373–84.Google Scholar
Miller, L. H., Aikawa, M. & Dvorak, J. A. (1975). Malaria (Plasmodium knowlesi) merozoites:immunity and the surface coat. Journal of Immunology 114, 1237–42.Google Scholar
Miller, L. H., David, P. H., Hudson, D. E., Hadley, T. J., Richards, R. L. & Aikawa, M. (1984). Monoclonal antibodies to a 140000-m.w. protein on Plasmodium knowlesi merozoites inhibit their invasion of rhesus erythrocytes. Journal of Immunology 132, 438–42.Google Scholar
Mitchell, G. H., Butcher, G. A., Voller, A. & Cohen, S. (1976). The effect of human immune IgG on the in vitro development of Plasmodium falciparum. Parasitology 72, 149–62.Google Scholar
Perrin, L. H. (1982). Immunity to asexual erythrocytic stages of Plasmodium falciparum: role of defined antigens in humoral response. Immunologial Reviews 61, 245–69.Google Scholar
Perrin, L. H., Ramirez, E., Lambert, P. H. & Miescher, P. A. (1981). Inhibition of P. falciparum growth in human erythrocytes by monoclonal antibodies. Nature, London 289, 301–3.CrossRefGoogle ScholarPubMed
Phillips, R. S., Trigg, P. I., Scott-Finnigan, T. J. & Bartholomew, R. K. (1972). Culture of Plasmodium falciparum in vitro: a subculture technique used for demonstrating antiplasmodial activity in serum from some Gambians, resident in an endemic malarious area. Parasitology 65, 525–35.CrossRefGoogle Scholar
Pirson, P. J. & Perkins, M. E. (1985). Characterization with monoclonal antibodies of a surface antigen of Plasmodium falciparum merozoites. Journal of Immunology 134, 1946–51.Google Scholar
Playfair, J. H. L. (1982). Immunity to malaria. British Medical Bulletin 38, 153–9.Google Scholar
Reese, R. J. & Motyl, M. R. (1979). Inhibition of the in vitro growth of Plasmodium falciparum. I. The effects of immune serum and purified immunoglobulin from owl monkeys. Journal of Immunology 123, 1890–9.Google ScholarPubMed
Saul, A., Myler, P., Schofield, L. & Kidson, C. (1984). A high molecular weight antigen in Plasmodium falciparum, recognized by inhibitory monoclonal antibodies. Parasite Immunology 6, 3950.CrossRefGoogle ScholarPubMed
Schofield, L., Saul, A., Myler, P. & Kidson, C. (1982). Antigenic differences between isolates of Plasmodium falciparum demonstrated by monoclonal antibodies. Infection and Immunity 38, 893–7.CrossRefGoogle ScholarPubMed
Shear, H. L., Nussenzweig, R. S. & Bianco, C. (1979). Immune phagocytosis in murine malaria. Journal of Experimental Medicine 149, 1288–98.Google Scholar
Thomas, A. W., Deans, J. A., Mitchell, G. H., Alderson, T. & Cohen, S. (1984). The fragments of monoclonal IgG to a merozoite surface antigen inhibit Plasmodium knowlesi invasion of erythrocytes. Molecular and Biochemical Parasitology 13, 187–99.CrossRefGoogle ScholarPubMed
Trager, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–5.Google Scholar
Vernes, A., Haynes, J. D., Tapchaisri, P., Williams, T. L., Dutoit, E. & Diggs, C. L. (1984). Plasmodium falciparum strain-specific human antibody inhibits merozoite invasion of erythrocytes. American Journal of Tropical Medicine and Hygiene 33, 197203.CrossRefGoogle ScholarPubMed
Wilson, R. J. M. & Phillips, R. S. (1976). Method to test inhibitory action of human sera to wild populations of Plasmodium falciparum. Nature, London 263, 132–4.Google Scholar
Zuckermann, A. (1945). In vitro opsonic tests with Plasmodium gallinaceum and Plasmodium lophurae. Journal of Infectious Diseases 77, 2859.CrossRefGoogle Scholar