Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T00:40:38.089Z Has data issue: false hasContentIssue false

Independent expression of the metacyclic and bloodstream variable antigen repertoires of Trypanosoma brucei rhodesiense

Published online by Cambridge University Press:  06 April 2009

C. M. R. Turner
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ
J. D. Barry
Affiliation:
Institute of Genetics, University of Glasgow, Glasgow G11 5JS
K. Vickerman
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ

Summary

The variable antigen repertoire expressed by metacyclic Trypanosoma brucei rhodesiense is not influenced by the anamnestic expression whereby the variable antigen type (VAT) ingested by a tsetse fly is present at high levels in early bloodstream populations of fly-infected mice. This has been demonstrated by feeding to Glossina morsitans a trypanosome line expressing a VAT which is normally a component of the metacyclic repertoire. The VAT did not constitute a significantly increased proportion of the resultant metacyclic population which would have occurred had anamnestic expression and metacyclic expression been linked. Five other metacyclic VATs were also present at control levels. We conclude that the mechanisms of expression of VATs in the fly and in the mammal are independently controlled.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashcroft, M. T. (1960). A comparison between a syringe-passaged and a tsetse fly-transmitted line of a strain of Trypanosoma rhodesiense. Annals of Tropical Medicine and Parasitology 53, 4453.CrossRefGoogle Scholar
Barry, J. D., Crowe, J. S. & Vickerman, K. (1983). Instability of the Trypanosoma brucei rhodesiense metacyclic variable antigen repertoire. Nature, London 306, 699701.CrossRefGoogle ScholarPubMed
Barry, J. D., Crowe, J. S. & Vickerman, K. (1985). Neutralization of individual variable antigen types in metacyclic populations of Trypanosoma brucei does not prevent their subsequent expression in mice. Parasitology 90, 7988.CrossRefGoogle Scholar
Barry, J. D., Hajduk, S. L., Vickerman, K. & Le Ray, D. (1979). Detection of multiple variable antigen types in metacyclic populations of Trypanosoma brucei. Transactions of the Royal Society of Tropical Medicine and Hygiene 73, 205–8.CrossRefGoogle ScholarPubMed
Barry, J. D. & Vickerman, K. (1979). Trypanosoma brucei: Loss of variable antigens during transformation from bloodstream to procyclic forms in vitro. Experimental Parasitology 48, 313–24.CrossRefGoogle ScholarPubMed
Borst, P. & Cross, G. A. M. (1982). Molecular basis for trypanosome antigenic variation. Cell 29, 291303.CrossRefGoogle ScholarPubMed
Buck, G. A., Longacre, S., Raibaud, A., Hibner, U., Giroud, C., Baltz, T., Baltz, D. & Eisen, H. (1984). Stability of expression-linked surface antigen gene in Trypanosoma equiperdum. Nature, London 307, 563–6.CrossRefGoogle ScholarPubMed
Capbern, A., Giroud, C., Baltz, T. & Mattern, P. (1977). Trypanosoma equiperdum: étude des variations antiénique au cours de la trypanosomose expérimentale du lapin. Experimental Parasitology 42, 613.CrossRefGoogle Scholar
Cornelissen, A. W. C. A., Bakkeren, G. A. M., Barry, J. D., Michels, P. A. M. & Borst, P. (1985). Characteristics of trypanosome variant antigen genes active in the tsetse fly. Nucleic Acids Research 13, 4661–76.CrossRefGoogle ScholarPubMed
Cross, G. A. M. (1975). Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393417.CrossRefGoogle ScholarPubMed
Crowe, J. S. (1983). Antigenic variation in cyclically transmitted African trypanosomes. Ph.D. thesis, University of Glasgow.Google Scholar
Crowe, J. S., Barry, J. D., Luckins, A. G., Ross, C. A. & Vickerman, K. (1983). All metacyclic variable antigen types of Trypanosoma congolense identified using monoclonal antibodies. Nature, London 306, 389–91.CrossRefGoogle ScholarPubMed
De Lange, T. (1985). The molecular biology of antigenic variation in trypanosomes: Gene rearrangements and discontinuous transcription. International Review of Cytology (in the Press).Google Scholar
Delauw, M. F., Pays, E., Steinert, M., Aerts, O., Van Meirvenne, N. & Le Ray, D. (1985). Inactivation and reactivation of a variant specific antigen gene in cyclically transmitted Trypanosoma brucei. The EMBO Journal 4, 989–93.CrossRefGoogle ScholarPubMed
Hajduk, S. L., Cameron, C. R., Barry, J. D. & Vickerman, K. (1981). Antigenic variation in cyclically transmitted Trypanosoma brucei. Variable antigen type composition of metacyclic trypanosome populations from the salivary glands of Glossina morsitans. Parasitology 83, 595607.CrossRefGoogle Scholar
Hajduk, S. L. & Vickerman, K. (1981). Antigenic variation in cyclically transmitted Trypanosoma brucei. Variable antigen type composition of the first parasitaemia in mice bitten by trypanosome infected Glossina morsitans. Parasitology 83, 609–21.CrossRefGoogle Scholar
Le Ray, D., Barry, J. D., Easton, C. & Vickerman, K. (1977). First tsetse fly transmission of the ‘AnTat’ serodeme of Trypanosoma brucei. Annales de la Société belge du Médicine tropicale 57, 369–81.Google ScholarPubMed
Michels, P. A. M., Van Der Ploeg, L. H. T., Liu, A. Y. C. & Borst, P. (1984). The inactivation and reactivation of an expression-linked gene copy for a variant surface glycoprotein in Trypanosoma brucei. The EMBO Journal 3, 1345–51.CrossRefGoogle ScholarPubMed
Overath, P., Czichos, J., Stock, U. & Nonnengaesser, C. (1983). Repression of glycoprotein synthesis and release of surface coat during transformation of Trypanosoma brucei. The EMBO Journal 2, 1721–8.CrossRefGoogle ScholarPubMed
Tetley, L. & Vickerman, K. (1985). Differentiation in Trypanosoma brucei: Host–parasite cell junctions and their persistence during reacquisition of the variable antigen coat. Journal of Cell Science 74, 119.CrossRefGoogle Scholar
Van Der Meer, C., Versluijs-Broers, J. A. M. & Opperdoes, F. R. (1979). Trypanosoma brucei: Trypanocidal effect of salicylhydroxamic acid plus glycerol in infected rats. Experimental Parasitology 48, 126–34.CrossRefGoogle ScholarPubMed
Van Der Ploeg, L. H. T. & Cornelissen, A. W. C. A. (1984). The contribution of chromosomal translocations to antigenic variation in Trypanosoma brucei. Philosophical Transactions of the Royal Society, B307, 1326.Google ScholarPubMed
Van Der Ploeg, L. H. T., Valerio, D., De Lange, T., Bernards, A., Borst, P. & Grosveld, F. G. (1982). An analysis of cosmid clones of nuclear DNA from Trypanosoma brucei shows that the genes for variant surface glycoproteins are clustered in the genone. Nucleic Acids Research 10, 5905–23.CrossRefGoogle Scholar
Van Meirvenne, N., Janssens, P. G. & Magnus, E. (1975). Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. 1. Rationalization of the experimental approach. Annals de la Société belge Médicine tropicale 55, 123.Google ScholarPubMed
Vickerman, K. (1969). On the surface coat and flagellar adhesion in trypanosomes. Journal of Cell Science 5, 163–93.CrossRefGoogle ScholarPubMed
Vickerman, K. & Barry, J. D. (1982). African trypanosomiasis. In Immunology of Parasitic Infections, 2nd edn (ed. Cohen, S. and Warren, K. S.), pp. 204–60. Oxford: Blackwell Scientific.Google Scholar
Young, J. R., Miller, E. N., Williams, R. O. & Turner, J. J. (1983). Are there two classes of VSG gene in Trypanosoma brucei. Nature, London 306, 196–8.CrossRefGoogle ScholarPubMed