Skip to main content Accessibility help
×
Home

Genetically-determined influences on the ability of poor responder mice to respond to immunization against Trichuris muris

  • K. J. Else (a1) and D. Wakelin (a1)

Summary

Strains of mice poorly (B10) or non-responsive (B10.BR) to a primary infection with Trichuris muris were protected against infection by vaccination with excretory/secretory (E/S) antigen in Complete Freund's Adjuvant (CFA). Protection in these mice was slow to be expressed compared to that in good responder strains. Vaccination boosted the IgG and IgG1 antibody responses to E/S antigen and altered the antigen recognition profiles, three high molecular weight antigens (80–85, 90–95, 105–110 kDa) being recognized by antibodies in sera from vaccinated but not control mice. B10. BR mice which had experienced a patent primary infection could not be protected against challenge infections by vaccination and this was correlated with depressed levels of IgG1, but not total IgG, to E'S antigen early post-challenge compared with vaccinated infected mice which had not seen an adult primary infection. There was also lack of recognition of the three high molecular weight antigens recognized by antibodies in sera from mice infected after vaccination. It is suggested that the rapid development of high levels of IgG1 antibodies, and the recognition of the three high molecular weight antigens, may reflect events that are important in protective immunity. Immunomodulation of host immunity by T. muris may therefore be achieved, at least in part, by the suppression of specific IgG1 levels, the production of an irrelevant IgG isotype and prevention of the recognition of critical antigens.

Copyright

References

Hide All
Barth, W. F., Mclaughlin, C. L. & Fahey, J. L. (1965). The immunoglobulins of mice. VI. Response to immunization. Journal of Immunology 95, 781–90.
Cohen, I. R., Talman, J., Lev-Ram, V. & Ben-Nun, A. (1979). Immune response genes have a variable influence on the selection of antigenic foreign and self determinants of insulin. Proceedings of the National Academy of Sciences, USA 76, 4066–70.
Cross, D. A. & Klesius, P. H. (1989). Soluble extracts from larval Ostertagia ostertagi modulating immune function. International Journal for Parasitology 19, 5761.
Else, K. J. & Wakelin, D. (1988). The effects of H-2 and non-H-2 genes on the expulsion of the nematode. Trichuris muris form inbred and congenic mice. Parasitology 96, 543–50.
Else, K. J. & Wakelin, D. (1989). Genetic variation in the humoral immune responses of mice to the nematode Trichuris muris. Parasitology 11, 7790.
Else, K. J., Wakelin, D. & Roach, T. J. A. (1989). Host predisposition to trichuriasis: the mouse -T. muris model. Parasitology 98, 275–82.
Jenkins, M. K. & Schwartz, R. H. (1987). Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. Journal of Experimental Medicine 165, 302–19.
Jenkins, S. N. (1977). Studies on the immune response of the mouse to the nematode Trichuris muris. Ph.D. thesis, University of Glasgow.
Jenkins, S. N. & Wakelin, D. (1977). The source and nature of some functional antigens of Trichuris muris. Parasitology 74, 153–61.
Jenkins, S. N. & Wakelin, D. (1983). Functional antigens of Trichuris muris released during in vitro maintenance: their immunogenicity and partial purification. Parasitology 86, 7382.
Kierzenbaum, F., Sztein, M. B. & Beltz, L. A. (1989). Decreased human II-2 receptor expression due to a protozoan pathogen. Immunology Today 10, 129–31.
Lanzavecchia, A. (1989). Is suppression a function of class II-restricted cytotoxic T cells? Immunology Today 10, 157–9.
Leid, W. R., Suquet, C. M., Bouwer, H. G. A & Hinrichs, D. J. (1986). Interleukin inhibition by a parasite proteinase inhibitor, taeniaestatin. Journal of Immunology 137, 2700–2.
Liew, F. Y., Hale, C. & Howard, J. G. (1985 a). Prophylactic immunization against experimental leishmaniasis. IV. Subcutaneous immunization prevented the induction of protective immunity against fatal Leishmania major infection. Journal of Immunology 135, 2095–101.
Liew, F. Y., Singleton, A., Cillari, E. & Howard, J. G. (1985 b). Prophylactic immunization against experimental leishmaniasis. V. Mechanism of the anti-protective blocking effect induced by subcutaneous immunization against Leishmania major infection. Journal of Immunology 135, 2102–7.
Lowry, O., Rosebrough, N., Farr, A. & Randall, R. (1951). Protein measurements with the folin-phenol reagent. Journal of Biological Chemistry 193, 265.
Mazingue, C. M., Camus, D., Dessaint, J. P., Capron, M. & Capron, A. (1980). In vitro and in vivo inhibition of mast cell degranulation by a factor from Schistosoma mansoni. International Archives of Allergy and Applied Immunology 63, 178–89.
Mazingue, C., Dessaint, J. P., Schmitt-Verhulst, A. M., Cerottini, J. C. & Capron, A. (1983). Inhibition of cytotoxic T lymphocytes by a schistosome-derived inhibitory factor is independent of an inhibition of the production of interleukin 2. International Archives of Allergy and Applied Immunology 72, 22–9.
Mazingue, C., Stadler, B. M., Quatannens, B., Capron, A. & Deweck, A. (1986). Schistosome-derived inhibitory factor: An immunosuppressive agent preferentially active on T lymphocytes. International Archives of Allergy and Applied Immunology 80, 347–54.
Mitchell, G. F. (1985). Exploitation of genetically based variation in host and parasite in the development of parasite vaccines. In Genetic Control of Host Resistance to Infection and Malignancy (ed. Skamene, E.) pp. 211–18. New York: Alan R. Liss, Inc.
Mitchell, G. F., Handman, E. & Spithill, T. W. (1984). Vaccination against cutaneous leishmaniasis in mice using non-pathogenic cloned promastigotes of Leishmania major and importance of route of injection. Australian Journal of Experimental Biology and Medical Science 62, 145–53
Monroy, F. G., Dobson, C. & Adams, J. H. (1989). Low molecular weight immunosuppressors secreted by adult Nematospiroides dubius. International Journal for Parasitology 19, 125–7.
Piessens, W. F., Ratiwayanto, S., Tuti, S., Palmerieri, J. H., Piessens, P. W., Koiman, I. & Dennis, D. T. (1980). Antigen-specific suppressor cells and suppressor factors in human filariasis with Brugia malayi. New England Journal of Medicine 302, 833–7.
Pritchard, D. I. & Behnke, J. M. (1985). The suppression of homologous immunity by soluble adult antigens of Nematospiroides dubius. Journal of Helminthology 59, 251–6.
Pritchard, D. I., Ali, N. M. H. & Behnke, J. M. (1984). Analysis of the mechanisms of immunodepression following heterologous antigenic stimulation during concurrent infection with Nematospiroides dubius. Immunology 51, 633–42.
Shinohara, N., Watanabe, M., Sachs, D. H. & Hozumi, N. (1988). Killing of antigen-reactive B cells by class II- restricted, soluble antigen-specific CD8 + cytolytic T lymphocytes. Nature, London 336, 481–4.
Snapper, C. M., Finkelman, F. D. & Paul, W. E. (1988). Regulation of IgG1 and IgE production by Interleukin 4. Immunological Reviews 102, 5175.
Vitetta, E. S., O'Hara, J., Myers, C. D., Layton, J. E., Krammer, P. H. & Paul, W. E. (1985). Serological, biochemical and functional identity of B cell- stimulatory factor 1 and B cell differentiation factor for IgG1. Journal of Experimental Medicine 162, 1726–31.
Wakelin, D. (1967). Acquired immunity to Trichuris muris in the albino laboratory mouse. Parasitology 57, 515–24.
Wakelin, D. (1970). Studies on the immunity of albino mice to Trichuris muris. Suppression of immunity by cortisone acetate. Parasitology 60, 229–37.
Wakelin, D. (1975). Genetic control of immune responses to parasites: immunity to Trichuris muris in inbred and random-bred strains of mice. Parasitology 71, 5160.
Wakelin, D. & Selby, G. R. (1973). Functional antigens of Trichuris muris. The stimulation of immunity by vaccination of mice with somatic antigen preparations. International Journal for Parasitology 3, 711–15.

Keywords

Genetically-determined influences on the ability of poor responder mice to respond to immunization against Trichuris muris

  • K. J. Else (a1) and D. Wakelin (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed