Skip to main content Accessibility help
×
Home

Estimating phylogenetic relationships despite discordant gene trees across loci: the species tree of a diverse species group of feather mites (Acari: Proctophyllodidae)

  • LACEY L. KNOWLES (a1) and PAVEL B. KLIMOV (a1)

Summary

With the increased availability of multilocus sequence data, the lack of concordance of gene trees estimated for independent loci has focused attention on both the biological processes producing the discord and the methodologies used to estimate phylogenetic relationships. What has emerged is a suite of new analytical tools for phylogenetic inference – species tree approaches. In contrast to traditional phylogenetic methods that are stymied by the idiosyncrasies of gene trees, approaches for estimating species trees explicitly take into account the cause of discord among loci and, in the process, provides a direct estimate of phylogenetic history (i.e. the history of species divergence, not divergence of specific loci). We illustrate the utility of species tree estimates with an analysis of a diverse group of feather mites, the pinnatus species group (genus Proctophyllodes). Discord among four sequenced nuclear loci is consistent with theoretical expectations, given the short time separating speciation events (as evident by short internodes relative to terminal branch lengths in the trees). Nevertheless, many of the relationships are well resolved in a Bayesian estimate of the species tree; the analysis also highlights ambiguous aspects of the phylogeny that require additional loci. The broad utility of species tree approaches is discussed, and specifically, their application to groups with high speciation rates – a history of diversification with particular prevalence in host/parasite systems where species interactions can drive rapid diversification.

Copyright

Corresponding author

*Corresponding authors: University of Michigan, Museum of Zoology 1109 Geddes Ave., Ann Arbor, Michigan 48109-1079 USA. LLK: Phone: (734) 763-5603. Fax: (734) 763-4080. E-mail: knowlesl@umich.edu. PBK: Phone: (734) 763-4354. Fax: (734) 763-4080. E-mail: pklimov@umich.edu

References

Hide All
Atyeo, W. T. and Braasch, N. L. (1966). The feather mite genus Proctophyllodes (Sarcoptiformes: Proctophyllodidae). Bulletin of the University of Nebraska State Museum 5, 1354.
Badek, A., Dabert, M., Mironov, S. V. and Dabert, J. (2008). A new species of the genus Proctophyllodes (Analgoidea: Proctophyllodidae) from Cetti's warbler Cettia cetti (Passeriformes: Sylviidae) with DNA Barcode Data. Annales Zoologici 58, 397402.
Belfiore, N. M., Liu, L. and Moritz, C. (2008). Multilocus phylogenetics of a rapid radiation in the genus Thomomys (Rodentia: Geomyidae). Systematic Biology 57, 294310.
Blanco, G., Seoane, J. and de la Puente, J. (1999). Showiness, non-parasitic symbionts, and nutritional condition in a passerine bird. Annales Zoologici Fennici 36, 8391.
Brumfield, R. T., Liu, L., Lum, D. E. and Edwards, S. V. (2008). Comparison of species tree methods for reconstructing the phylogeny of bearded manakins (Aves: Pipridae, Manacus) from multilocus sequence data. Systematic Biology 57, 719731.
Cannone, J., Subramanian, S., Schnare, M., Collett, J., D'Souza, L., Du, Y., Feng, B., Lin, N., Madabusi, L., Muller, K., Pande, N., Shang, Z., Yu, N. and Gutell, R. (2002). The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2.
Carstens, B. C. and Knowles, L. L. (2007). Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus grasshoppers. Systematic Biology 56, 400411.
Cranston, K. A., Hurwitz, B., Ware, D., Stein, L. and Wing, R. A. (2009). Species trees from highly incongruent gene trees in rice. Systematic Biology 58, 489500.
Degnan, J. H. and Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology and Evolution 24, 332340.
Degnan, J. H. and Salter, L. A. (2005). Gene tree distributions under the coalescent process. Evolution 59, 2437.
Drummond, A. J. and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
Eckert, A. J. and Carstens, B. C. (2008). Does gene flow destroy phylogenetic signal? The performance of three methods for estimating species phylogenies in the presence of gene flow. Molecular Phylogenetics and Evolution 49, 832842.
Edwards, S. V., Liu, L. and Pearl, D. K. (2007). High-resolution species trees without concatenation. Proceedings of the National Academy of Sciences, USA 104, 59365941.
Felsenstein, J. (2004). Inferring Phylogenies, Sinauer Associates, Sunderland, MA, USA.
Gillespie, J. J., Johnston, J. S., Cannone, J. J. and Gutell, R. R. (2006). Characteristics of the nuclear (18S, 5·8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Molecular Biology 15, 657686.
Hartup, B. K., Stott-Messick, B., Guzy, M. and Ley, D. H. (2004). Health survey of house finches (Carpodacus mexicanus) from Wisconsin. Avian Diseases 48, 8490.
Heled, J. and Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27, 570580.
Huang, H., He, Q., Kubatko, L. S. and Knowles, L. L. (2010). Sources of error inherent in species-tree estimation: impact of mutational and coalescent effects on accuracy and implications for choosing among different methods. Systematic Biology 59, 573583.
Huang, H. and Knowles, L. L. (2009). What is the danger of the anomaly zone for empirical phylogenetics? Systematic Biology 58, 527536.
Joly, S., McLenachan, P. A. and Lockhart, P. J. (2009). A statistical approach for distinguishing hybridization and incomplete lineage sorting. American Naturalist 174, E54E70.
Klimov, P. B. and OConnor, B. M. (2008). Origin and higher-level relationships of psoroptidian mites (Acari: Astigmata: Psoroptidia): evidence from three nuclear genes. Molecular Phylogenetics and Evolution 47, 11351156.
Knowles, L. L. (2009). Estimating species trees: methods of phylogenetic analysis when there is incongruence across genes. Systematic Biology 58, 463467.
Knowles, L. L. (2010). Sampling strategies for species-tree estimation. In Estimating Species Trees: Practical and Theoretical Aspects (ed. Knowles, L. L. and Kubatko, L. S.), Wiley-Blackwell, Hoboken, NJ, USA.
Knowles, L. L. and Chan, Y.-H. (2008). Resolving species phylogenies of recent evolutionary radiations. Annals of the Missouri Botanical Garden 95, 224231.
Knowles, L. L. and Kubatko, L. S. (2010). Estimating species trees: an introduction to concepts and models. In Estimating Species Trees: Practical and Theoretical Aspects (ed. Knowles, L. L. and Kubatko, L. S.), pp. 112. Wiley-Blackwell, Hoboken, NJ, USA.
Kubatko, L. and Degnan, J. (2007). Inconsistency of phylogenetic estimates from concatenated data under coalescence. Systematic Biology 56, 1724.
Kubatko, L. S. and Gibbs, H. L. (2010). Estimating species relationships and taxon distinctiveness in Sistrurus rattlesnakes using multi-locus data. In Estimating Species Trees: Practical and Theoretical Aspects (ed. Knowles, L. L. and Kubatko, L. S.), pp. 193206. Wiley-Blackwell, Hoboken, NJ, USA.
Linnen, C. (2010). Species-tree estimation for complex divergence Histories: A case study in Neodiprion sawflies. In Estimating Species Trees: Practical and Theoretical Aspects (ed. Knowles, L. L. and Kubatko, L. S.), pp. 145192. Wiley-Blackwell, Hoboken, NJ, USA.
Liu, L. and Pearl, D. K. (2007). Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Systematic Biology 56, 504514.
Liu, L., Yu, L., Kubatko, L., Pearl, D. K. and Edwards, S. V. (2009). Coalescent methods for estimating phylogenetic trees. Molecular Phylogenetics and Evolution 53, 320328.
Maddison, W. P. (1997). Gene trees in species trees. Systematic Biology 46, 523536.
Maddison, W. P. and Knowles, L. L. (2006). Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 55, 2130.
Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology 288, 911940.
McCormack, J. E., Heled, J., Delaney, K. S., Peterson, A. T. and Knowles, L. L. (2010). Calibrating divergence times on species trees versus gene trees: Implications for speciation history of Aphelocoma jays. Evolution 65, 184202.
McCormack, J. E., Huang, H. and Knowles, L. L. (2009). Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design. Systematic Biology 58, 501508.
Mossel, E. and Roch, S. (2010). Incomplete lineage sorting: consistent phylogeny estimation from multiple loci. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7, 166171.
Mossel, E. and Vigoda, E. (2005). Phylogenetic MCMC algorithms are misleading on mixtures of trees. Science 309, 22072209.
Oneal, E., Otte, D. and Knowles, L. L. (2010). Testing for biogeographic mechanisms promoting divergence in Caribbean crickets (genus Amphiacusta). Journal of Biogeography 37, 530540.
Posada, D. and Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793808.
Rambaut, A. (2009). FigTree. Available online at http://tree.bio.ed.ac.uk/software/figtree/.
Rambaut, A. and Drummond, A. J. (2009). Tracer v1.5. Available from http://beast.bio.ed.ac.uk/Tracer.
Takahata, N. (1989). Gene genealogy in three related populations: consistency probability between gene and population trees. Genetics 122, 957966.
Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31, 34063415.

Keywords

Type Description Title
PDF
Supplementary materials

Knowles Supplementary Material
Knowles Supplementary Material

 PDF (107 KB)
107 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed