Skip to main content Accessibility help
×
Home

Ectoparasites and endoparasites of fish form networks with different structures

  • S. BELLAY (a1), E. F. DE OLIVEIRA (a2), M. ALMEIDA-NETO (a3), M. A. R. MELLO (a4), R. M. TAKEMOTO (a1) and J. L. LUQUE (a5)...

Summary

Hosts and parasites interact with each other in a variety of ways, and this diversity of interactions is reflected in the networks they form. To test for differences in interaction patterns of ecto- and endoparasites we analysed subnetworks formed by each kind of parasites and their host fish species in fish–parasite networks for 22 localities. We assessed the proportion of parasite species per host species, the relationship between parasite fauna composition and host taxonomy, connectance, nestedness and modularity of each subnetwork (n = 44). Furthermore, we evaluated the similarity in host species composition among modules in ecto- and endoparasite subnetworks. We found several differences between subnetworks of fish ecto- and endoparasites. The association with a higher number of host species observed among endoparasites resulted in higher connectance and nestedness, and lower values of modularity in their subnetworks than in those of ectoparasites. Taxonomically related host species tended to share ecto- or endoparasites with the same interaction intensity, but the species composition of hosts tended to differ between modules formed by ecto- and endoparasites. Our results suggest that different evolutionary and ecological processes are responsible for organizing the networks formed by ecto- and endoparasites and fish.

Copyright

Corresponding author

* Corresponding author. Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco G90, Sala 13, 87020-900, Maringá, Paraná, Brazil. E-mail: sybellebellay@yahoo.com.br

References

Hide All
Almeida-Neto, M. and Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling and Software 26, 173178.
Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. and Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 12271239.
Arai, H. P. and Mudry, D. R. (1983). Protozoan and metazoan parasites of fishes from the headwaters of the Parsnip and McGregor Rivers, British Columbia: a study of possible parasite transfaunations. Canadian Journal of Fisheries and Aquatic Sciences 40, 16761684.
Arthur, J. R. and Te, B. Q. (2006). Checklist of the Parasites of Fishes of Viet Nam. FAO Fisheries Technical paper 369/2. Food and Agriculture Organization of the United Nations, Rome, Italy. Available from: http://www.fao.org/docrep/009/a0878e/a0878e00.htm
Arthur, J. R., Margolis, L. and Arai, H. P. (1976). Parasites of fishes of Aishihik and Stevens Lakes, Yukon Territory, and potential consequences of their interlake transfer through a proposed water diversion for hydroelectrical purposes. Journal of the Fisheries Research Board of Canada 33, 24892499.
de Azevedo, R. K., Abdallah, V. D. and Luque, J. L. (2010). Acanthocephala, Annelida, Arthropoda, Myxozoa, Nematoda and Platyhelminthes parasites of fishes from the Guandu river, Rio de Janeiro, Brazil. Check List 6, 659667.
Bellay, S., Lima, D. P. Jr., Takemoto, R. M. and Luque, J. L. (2011). A host–endoparasite network of Neotropical marine fish: are there organizational patterns? Parasitology 138, 19451952.
Bellay, S., de Oliveira, E. F., Almeida-Neto, M., Lima Junior, D. P., Takemoto, R. M. and Luque, J. L. (2013). Developmental stage of parasites influences the structure of fish–parasite networks. PloS ONE 8, e75710.
Brito, S. V., Corso, G., Almeida, A. M., Ferreira, F. S., Almeida, W. O., Anjos, L. A., Mesquita, D. O. and Vasconcellos, A. (2014). Phylogeny and micro-habitats utilized by lizards determine the composition of their endoparasites in the semiarid Caatinga of Northeast Brazil. Parasitology Research 113, 39633972.
Bush, A. O., Fernández, J. C., Esch, G. W. and Seed, J. R. (eds.) (2001). Parasitism: The Diversity and Ecology of Animal Parasites. Cambridge University Press, Cambridge.
Chemes, S. B. and Takemoto, R. M. (2011). Diversity of parasites from Middle Paraná system freshwater fishes, Argentina. International Journal of Biodiversity and Conservation 3, 249266.
Chinniah, V. C. and Threlfall, W. (1978). Metazoan parasites of fish from the Smallwood Reservoir, Labrador, Canada. Journal of Fish Biology 13, 203213.
Choudhury, A., Hoffnagle, T. L. and Cole, R. A. (2004). Parasites of native and nonnative fishes of the Little Colorado River, Grand Canyon, Arizona. Journal of Parasitology 90, 10421053.
Dechtiar, A. O. (1972). Parasites of fish from Lake of the Woods, Ontario. Journal of Fisheries Research Board of Canada 29, 275283.
Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. and Jetz, W. (2008). Homage to Linnaeus: how many parasites? How many hosts? Proceedings of the National Academy of Sciences of the United States of America 105(Suppl), 1148211489.
Fonseca, C. R. and John, J. L. (1996). Connectance: a role for community allometry. Oikos 77, 353358.
Fontaine, C., Guimarães, P. R., Kéfi, S., Loeuille, N., Memmott, J., van der Putten, W. H., van Veen, F. J. F. and Thébault, E. (2011). The ecological and evolutionary implications of merging different types of networks. Ecology Letters 14, 1170–81.
Fortuna, M. A., Stouffer, D. B., Olesen, J. M., Jordano, P., Mouillot, D., Krasnov, B. R., Poulin, R. and Bascompte, J. (2010). Nestedness versus modularity in ecological networks: two sides of the same coin? Journal of Animal Ecology 79, 811817.
Froese, R. and Pauly, D. (2013). FishBase. World Wide Web electronic publication. http://www.fishbase.org
Garrido-Olvera, L., Arita, H. T. and Pérez-Ponce De León, G. (2012). The influence of host ecology and biogeography on the helminth species richness of freshwater fishes in Mexico. Parasitology 139, 16521665.
Graham, S. P., Hassan, H. K., Burkett-Cadena, N. D., Guyer, C. and Unnasch, T. R. (2009). Nestedness of ectoparasite-vertebrate host networks. PloS ONE 4, e7873.
Guimarães, P. R. Jr. and Guimarães, P. R. (2006). Improving the analyses of nestedness for large sets of matrices. Environmental Modelling and Software 21, 15121513.
Guimarães, P. R., Rico-Gray, V., Oliveira, P. S., Izzo, T. J., dos Reis, S. F. and Thompson, J. N. (2007). Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Current Biology: CB 17, 17971803.
Guimerà, R. and Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature 433, 895900.
Kirjušina, M. and Vismanis, K. (2007). Checklist of the Parasites of Fishes of Latvia. FAO Fisheries Technical paper 369/3. Food and Agriculture Organization of the United Nations, Rome, Italy. Available from: http://www.fao.org/docrep/010/a1078e/a1078e00.htm
Koehler, A. V., Brown, B., Poulin, R., Thieltges, D. W., Fredensborg, B. L. (2012). Disentangling phylogenetic constraints from selective forces in the evolution of trematode transmission stages. Evolutionary Ecology 26, 14971512.
Krasnov, B. R., Fortuna, M. A., Mouillot, D., Khokhlova, I. S., Shenbrot, G. I. and Poulin, R. (2012). Phylogenetic signal in module composition and species connectivity in compartmentalized host–parasite networks. The American Naturalist 179, 501511.
Leong, T. S. and Holmes, J. C. (1981). Communities of metazoan parasites in open water fishes of Cold Lake, Alberta. Journal of Fish Biology 18, 693713.
Lewinsohn, T. M. and Prado, P. I. (2006). Structure in plant–animal interaction assemblages. Oikos 113, 174184.
Lima, D. P. Jr., Giacomini, H. C., Takemoto, R. M., Agostinho, A. A. and Bini, L. M. (2012). Patterns of interactions of a large fish–parasite network in a tropical floodplain. Journal of Animal Ecology 81, 905913.
Mello, M. A. R., Marquitti, F. M. D., Guimarães, P. R. Jr., Kalko, E. K. V., Jordano, P. and de Aguiar, M. A. M. (2011). The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS ONE 6, e17395.
Muzzall, P. M. and Whelan, G. (2011). Parasites of Fish from the Great Lakes: A Synopsis and Review of the Literature, 1871–2010. Great Lakes Fishery Commission Miscellaneous Publication 2011–01. Ann Arbor, MI. Available from: http://www.glfc.org/pubs/SpecialPubs/2011-01.pdf.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H. and Wagner, H. (2014). Vegan: Community Ecology Package. http://cran.r-project.org/web/packages/vegan/index.html
Paradis, E., Claude, J. and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289290.
Pimm, S. L. (1982). Food Webs. Chapman & Hall, London.
Poisot, T., Stanko, M., Miklisová, D. and Morand, S. (2013). Facultative and obligate parasite communities exhibit different network properties. Parasitology 140, 13401345.
Poulin, R. (1998). Evolutionary Ecology of Parasites. First. Chapman & Hall, London.
Poulin, R. and Leung, T. L. F. (2011). Body size, trophic level, and the use of fish as transmission routes by parasites. Oecologia 166, 731738.
Poulin, R., Krasnov, B. R., Pilosof, S. and Thieltges, D. W. (2013). Phylogeny determines the role of helminth parasites in intertidal food webs. The Journal of Animal Ecology 82, 12651275.
R Development Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org/
Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P. and Bascompte, J. (2007). Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925928.
Statsoft, Inc. (2005). Statistica (data analysis software system), version 7.1. http://www.statsoft.com
Strona, G., Galli, P. and Fattorini, S. (2013). Fish parasites resolve the paradox of missing coextinctions. Nature Communications 4, 1718.
Suweis, S., Simini, F., Banavar, J. R. and Maritan, A. (2013). Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449452.
Takemoto, R. M., Pavanelli, G. C., Lizama, M. A. P., Luque, J. L. and Poulin, R. (2005). Host population density as the major determinant of endoparasite species richness in floodplain fishes of the upper Paraná River, Brazil. Journal of Helminthology 79, 7584.
Takemoto, R. M., Pavanelli, G. C., Lizama, M. A. P., Lacerda, A. C. F., Yamada, F. H., Moreira, L. H. A., Ceschini, T. L. and Bellay, S. (2009). Diversity of parasites of fish from the upper Paraná River floodplain, Brazil. Brazilian Journal Biology 69, 691705.
Thébault, E. and Fontaine, C. (2008). Does asymmetric specialization differ between mutualistic and trophic networks? Oikos 117, 555563.
Thompson, J. N. (1994). The Coevolutionary Process. University of Chicago Press, Chicago.
Timi, J. T., Rossin, M. A., Alarcos, A. J., Braicovich, P. E., Cantatore, D. M. P. and Lanfranchi, A. L. (2011). Fish trophic level and the similarity of non-specific larval parasite assemblages. International Journal for Parasitology 41, 309316.
Vázquez, D. P., Poulin, R., Krasnov, B. R. and Shenbrot, G. I. (2005). Species abundance and the distribution of specialization in host–parasite interaction networks. Journal of Animal Ecology 74, 946955.
Violante-González, J. and Aguirre-Macedo, M. L. (2007). Metazoan parasites of fishes from Coyuca Lagoon, Guerrero, Mexico. Zootaxa 1531, 3948.
Violante-González, J., Aguirre-Macedo, M. L. and Mendoza-Franco, E. F. (2007). A checklist of metazoan parasites of fish from Tres Palos Lagoon, Guerrero, Mexico. Parasitology Research 102, 151161.

Keywords

Type Description Title
EXCEL
Supplementary materials

Bellay supplementary material
Bellay supplementary material 1

 Excel (3.0 MB)
3.0 MB

Ectoparasites and endoparasites of fish form networks with different structures

  • S. BELLAY (a1), E. F. DE OLIVEIRA (a2), M. ALMEIDA-NETO (a3), M. A. R. MELLO (a4), R. M. TAKEMOTO (a1) and J. L. LUQUE (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed