Skip to main content Accessibility help

DNA barcoding mosquitoes: advice for potential prospectors

  • NIGEL W. BEEBE (a1) (a2)
  • Please note a correction has been issued for this article.


Mosquitoes’ importance as vectors of pathogens that drive disease underscores the importance of precise and comparable methods of taxa identification among their species. While several molecular targets have been used to study mosquitoes since the initiation of PCR in the 1980s, its application to mosquito identification took off in the early 1990s. This review follows the research's recent journey into the use of mitochondrial DNA (mtDNA) cytochrome oxidase 1 (COI or COX1) as a DNA barcode target for mosquito species identification – a target whose utility for discriminating mosquitoes is now escalating. The pros and cons of using a mitochondrial genome target are discussed with a broad sweep of the mosquito literature suggesting that nuclear introgressions of mtDNA sequences appear to be uncommon and that the COI works well for distantly related taxa and shows encouraging utility in discriminating more closely related species such as cryptic/sibling species groups. However, the utility of COI in discriminating some closely related groups can be problematic and investigators are advised to proceed with caution as problems with incomplete lineage sorting and introgression events can result in indistinguishable COI sequences appearing in reproductively independent populations. In these – if not all – cases, it is advisable to run a nuclear marker alongside the mtDNA and thus the utility of the ribosomal DNA – and in particular the internal transcribed spacer 2 – is also briefly discussed as a useful counterpoint to the COI.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      DNA barcoding mosquitoes: advice for potential prospectors
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      DNA barcoding mosquitoes: advice for potential prospectors
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      DNA barcoding mosquitoes: advice for potential prospectors
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Corresponding author: University of Queensland, St Lucia, Brisbane, Australia. E-mail:


Hide All
Ajamma, Y. U., Villinger, J., Omondi, D., Salifu, D., Onchuru, T. O., Njoroge, L., Muigai, A. W. T. and Masiga, D. K. (2016). Composition and genetic diversity of mosquitoes (Diptera: Culicidae) on Islands and Mainland shores of Kenya's lakes Victoria and Baringo. Journal of Medical Entomology 53, 13481363.
Alquezar, D. E., Hemmerter, S., Cooper, R. D. and Beebe, N. W. (2010). Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea. Bmc Evolutionary Biology 10, 392.
Ambrose, L., Riginos, C., Cooper, R. D., Leow, K. S., Ong, W. and Beebe, N. W. (2012). Population structure, mitochondrial polyphyly and the repeated loss of human biting ability in anopheline mosquitoes from the southwest Pacific. Molecular Ecology 21, 43274343.
Ashfaq, M., Hebert, P. D., Mirza, J. H., Khan, A. M., Zafar, Y. and Mirza, M. S. (2014). Analyzing mosquito (Diptera: culicidae) diversity in Pakistan by DNA barcoding. PLoS ONE 9, e97268.
Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A. and Saunders, N. C. (1987). Intraspecific Phylogeography – the mitochondrial-DNA bridge between population-genetics and systematics. Annual Review of Ecology and Systematics 18, 489522.
Ayala, F. J. and Coluzzi, M. (2005). Chromosome speciation: humans, Drosophila, and mosquitoes. Proceedings of the National Academy of Sciences of the United States of America 102(Suppl. 1), 65356542.
Azari-Hamidian, S., Yaghoobi-Ershadi, M. R., Javadian, E., Abai, M. R., Mobedi, I., Linton, Y. M. and Harbach, R. E. (2009). Distribution and ecology of mosquitoes in a focus of dirofilariasis in northwestern Iran, with the first finding of filarial larvae in naturally infected local mosquitoes. Medical and Veterinary Entomology 23, 111121.
Ballard, J. W. O. and Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology 13, 729744.
Barley, A. J. and Thomson, R. C. (2016). Assessing the performance of DNA barcoding using posterior predictive simulations. Molecular Ecology 25, 19441957.
Batovska, J., Blacket, M. J., Brown, K. and Lynch, S. E. (2016). Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecology and Evolution 6, 30013011.
Batovska, J., Cogan, N. O., Lynch, S. E. and Blacket, M. J. (2017). Using next-generation sequencing for DNA barcoding: capturing allelic variation in ITS2. G3 (Bethesda) 7, 1929.
Beckmann, J. F., Ronau, J. A. and Hochstrasser, M. (2017). A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nature Microbiology 2, 17007.
Beebe, N. W. and Saul, A. (1995). Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction–restriction fragment length polymorphism analysis. American Journal of Tropical Medicine and Hygiene 53, 478481.
Beebe, N. W., Cooper, R. D., Morrison, D. A. and Ellis, J. T. (2000). Subset partitioning of the ribosomal DNA small subunit and its effects on the phylogeny of the Anopheles punctulatus group. Insect Molecular Biology 9, 515520.
Beebe, N. W., Maung, J., van den Hurk, A. F., Ellis, J. T. and Cooper, R. D. (2001). Ribosomal DNA spacer genotypes of the Anopheles bancroftii group (Diptera: Culicidae) from Australia and Papua New Guinea. Insect Molecular Biology 10, 407413.
Beebe, N. W., Russell, T., Burkot, T. R. and Cooper, R. D. (2015). Anopheles punctulatus group: evolution, distribution, and control. Annual Review of Entomology 60, 335350.
Beebe, N. W., van den Hurk, A. F., Chapman, H. F., Frances, S. P., Williams, C. R. and Cooper, R. D. (2002). Development and evaluation of a species diagnostic polymerase chain reaction-restriction fragment-length polymorphism procedure for cryptic members of the Culex sitiens (Diptera: Culicidae) subgroup in Australia and the southwest Pacific. Journal of Medical Entomology 39, 362369.
Beebe, N. W., Whelan, P. I., Van den Hurk, A. F., Ritchie, S. A., Corcoran, S. and Cooper, R. D. (2007). A polymerase chain reaction-based diagnostic to identify larvae and eggs of container mosquito species from the Australian region. Journal of Medical Entomology 44, 376380.
Behura, S. K., Lobo, N. F., Haas, B., deBruyn, B., Lovin, D. D., Shumway, M. F., Puiu, D., Romero-Severson, J., Nene, V. and Severson, D. W. (2011). Complete sequences of mitochondria genomes of Aedes aegypti and Culex quinquefasciatus and comparative analysis of mitochondrial DNA fragments inserted in the nuclear genomes. Insect Biochemistry and Molecular Biology 41, 770777.
Bennett, K. L., Linton, Y. M., Shija, F., Kaddumukasa, M., Djouaka, R., Misinzo, G., Lutwama, J., Huang, Y. M., Mitchell, L. B., Richards, M., Tossou, E. and Walton, C. (2015). Molecular differentiation of the African Yellow Fever Vector Aedes bromeliae (Diptera: Culicidae) from Its Sympatric Nonvector Sister Species, Aedes lilii. PLoS Neglected Tropical Diseases 9, 119. ARTN e0004250.
Besansky, N. J., Krzywinski, J., Lehmann, T., Simard, F., Kern, M., Mukabayire, O., Fontenille, D., Toure, Y. and Sagnon, N. (2003). Semipermeable species boundaries between Anopheles gambiae and Anopheles arabiensis: evidence from multilocus DNA sequence variation. Proceedings of the National Academy of Sciences of the United States of America 100, 1081810823.
Black, W. C. and Bernhardt, S. A. (2009). Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome. Insect Molecular Biology 18, 705713.
Bower, J. E., Dowton, M., Cooper, R. D. and Beebe, N. W. (2008). Intraspecific concerted evolution of the rDNA ITS1 in Anopheles farauti sensu stricto (Diptera: Culicidae) reveals recent patterns of population structure. Journal of Molecular Evolution 67, 397411.
Bower, J. E., Cooper, R. D. and Beebe, N. W. (2009). Internal repetition and intraindividual variation in the rDNA ITS1 of the Anopheles punctulatus group (Diptera: Culicidae): multiple units and rates of turnover. Journal of Molecular Evolution 68, 6679.
Brown, W. M., George, M. Jr and Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 76, 19671971.
Chan, A., Chiang, L. P., Hapuarachchi, H. C., Tan, C. H., Pang, S. C., Lee, R., Lee, K. S., Ng, L. C. and Lam-Phua, S. G. (2014). DNA barcoding: complementing morphological identification of mosquito species in Singapore. Parasites & Vectors 7, 112.
Coetzee, M., Hunt, R. H., Wilkerson, R., Della Torre, A., Coulibaly, M. B. and Besansky, N. J. (2013). Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 3619, 246274.
Coluzzi, M., Sabatini, A., della Torre, A., Di Deco, M. A. and Petrarca, V. (2002). A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298, 14151418.
Crabtree, M. B., Savage, H. M. and Miller, B. R. (1995). Development of a species-diagnostic polymerase chain reaction assay for the identification of Culex vectors of St. Louis encephalitis virus based on interspecies sequence variation in ribosomal DNA spacers. American Journal of Tropical Medicine and Hygiene 53, 105109.
Crampton-Platt, A., Yu, D. W., Zhou, X. and Vogler, A. P. (2016). Mitochondrial metagenomics: letting the genes out of the bottle. Gigascience 5, 111.
Crawford, J. E., Riehle, M. M., Guelbeogo, W. M., Gneme, A., Sagnon, N., Vernick, K. D., Nielsen, R. and Lazzaro, B. P. (2015). Reticulate speciation and barriers to introgression in the Anopheles gambiae species complex. Genome Biology and Evolution 7, 31163131.
Cywinska, A., Hunter, F. F. and Hebert, P. D. N. (2006). Identifying Canadian mosquito species through DNA barcodes. Medical and Veterinary Entomology 20, 413424.
Danabalan, R., Ponsonby, D. J. and Linton, Y. M. (2012). A critical assessment of available molecular identification tools for determining the status of Culex pipiens Sl in the United Kingdom. Journal of the American Mosquito Control Association 28, 6874.
de Queiroz, K. (2005). Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences of the United States of America 102, 66006607.
Donnelly, M. J., Pinto, J., Girod, R., Besansky, N. J. and Lehmann, T. (2004). Revisiting the role of introgression vs shared ancestral polymorphisms as key processes shaping genetic diversity in the recently separated sibling species of the Anopheles gambiae complex. Heredity (Edinb) 92, 6168.
Dover, G. (2002). Molecular drive. Trends in Genetics 18, 587589.
Eickbush, T. H. and Eickbush, D. G. (2007). Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175, 477485.
Farajollahi, A., Fonseca, D. M., Kramer, L. D. and Marm Kilpatrick, A. (2011). Bird biting’ mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infection Genetics and Evolution 11, 15771585.
Garrick, R. C., Sunnucks, P. and Dyer, R. J. (2010). Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation. BMC Evolutionary Biology 10, 117.
Goldstein, P. Z. and DeSalle, R. (2011). Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. Bioessays 33, 135147.
Harbach, R. E. (2018) Mosquito Taxonomic Inventory In.
Hebert, P. D. N., Cywinska, A., Ball, S. L. and DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B – Biological Sciences 270, 313321.
Hemmerter, S., Slapeta, J., van den Hurk, A. F., Cooper, R. D., Whelan, P. I., Russell, R. C., Johansen, C. A. and Beebe, N. W. (2007). A curious coincidence: mosquito biodiversity and the limits of the Japanese encephalitis virus in Australasia. BMC Evolutionary Biology 7, 111.
Hemmerter, S., Slapeta, J. and Beebe, N. W. (2009). Resolving genetic diversity in Australasian Culex mosquitoes: incongruence between the mitochondrial cytochrome c oxidase I and nuclear acetylcholine esterase 2. Molecular Phylogenetics and Evolution 50, 317325.
Higa, Y., Toma, T., Tsuda, Y. and Miyagi, I. (2010). A multiplex PCR-based molecular identification of five morphologically related, medically important subgenus Stegomyia mosquitoes from the genus Aedes (Diptera: Culicidae) found in the Ryukyu Archipelago, Japan. Japanese Journal of Infectious Diseases 63, 312316.
Hlaing, T., Tun-Lin, W., Somboon, P., Socheat, D., Setha, T., Min, S., Chang, M. S. and Walton, C. (2009). Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies. BMC Genetics 10, 112.
Hoffmann, A. A. and Rieseberg, L. H. (2008). Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annual Review of Ecology Evolution and Systematics 39, 2142.
Hurst, G. D. D. and Jiggins, F. M. (2005). Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society B – Biological Sciences 272, 15251534.
Just, R. S., Irwin, J. A. and Parson, W. (2015). Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Science International: Genetics 18, 131139.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. Journal of Molecular Evolution 16, 111120.
Kress, W. J., Garcia-Robledo, C., Uriarte, M. and Erickson, D. L. (2015). DNA barcodes for ecology, evolution, and conservation. Trends in Ecology & Evolution 30, 2535.
Kumar, A. and Rai, K. S. (1990). Chromosomal localization and copy number of 18S + 28S ribosomal RNA genes in evolutionarily diverse mosquitoes (Diptera, Culicidae). Hereditas 113, 277289.
Kumar, N. P., Rajavel, A. R., Natarajan, R. and Jambulingam, P. (2007). DNA barcodes can distinguish species of Indian mosquitoes (Diptera : Culicidae). Journal of Medical Entomology 44, 17.
Laurent, B. S., Cooke, M., Krishnankutty, S. M., Asih, P., Mueller, J. D., Kahindi, S., Ayoma, E., Oriango, R. M., Thumloup, J., Drakeley, C., Cox, J., Collins, F. H., Lobo, N. F. and Stevenson, J. C. (2016). Molecular characterization reveals diverse and unknown malaria vectors in the Western Kenyan Highlands. American Journal of Tropical Medicine and Hygiene 94, 327335.
Laurito, M., de Oliveira, T. M. P., Almiron, W. R. and Sallum, M. A. M. (2013). COI barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil. Memorias Do Instituto Oswaldo Cruz 108, 110–U152.
LePage, D. P., Metcalf, J. A., Bordenstein, S. R., On, J. M., Perlmutter, J. I., Shropshire, J. D., Layton, E. M., Funkhouser-Jones, L. J., Beckmann, J. F. and Bordenstein, S. R. (2017). Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243.
Lobo, N. F., St Laurent, B., Sikaala, C. H., Hamainza, B., Chanda, J., Chinula, D., Krishnankutty, S. M., Mueller, J. D., Deason, N. A., Hoang, Q. T., Boldt, H. L., Thumloup, J., Stevenson, J., Seyoum, A. and Collins, F. H. (2015). Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Scientific Reports 5, 17952.
Mallet, J., Besansky, N. and Hahn, M. W. (2016). How reticulated are species? BioEssays 38, 140149.
Marrelli, M. T., Sallum, M. A. M. and Marinotti, O. (2006). The second internal transcribed spacer of nuclear ribosomal DNA as a tool for Latin American anopheline taxonomy - A critical review. Memorias Do Instituto Oswaldo Cruz 101, 817832.
Mayr, E. (1942). Systematics and the Origin of Species. Columbia Universiry Press, New York.
Meier, R., Zhang, G. Y. and Ali, F. (2008). The Use of mean instead of smallest interspecific distances exaggerates the size of the ‘barcoding gap’ and leads to misidentification. Systematic Biology 57, 809813.
Meyer, CP and Paulay, G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, 22292238, e422.
Montgomery, B. L., Shivas, M. A., Hall-Mendelin, S., Edwards, J., Hamilton, N. A., Jansen, C. C., McMahon, J. L., Warrilow, D. and van den Hurk, A. F. (2017). Rapid Surveillance for Vector Presence (RSVP): Development of a novel system for detecting Aedes aegypti and Aedes albopictus. PLOS Neglected Tropical Diseases 11, e0005505.
Nachman, M. W. and Churchill, G. A. (1996). Heterogeneity in rates of recombination across the mouse genome. Genetics 142, 537548.
Nei, M. and Rooney, A. P. (2005). Concerted and birth-and-death evolution of multigene families. Annual Review of Genetics 39, 121152.
Norris, L. C., Main, B. J., Lee, Y., Collier, T. C., Fofana, A., Cornel, A. J. and Lanzaro, G. C. (2015). Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proceedings of the National Academy of Sciences of the United States of America 112, 815820.
Nunes, M. D., Nolte, V. and Schlotterer, C. (2008). Nonrandom Wolbachia infection status of Drosophila melanogaster strains with different mtDNA haplotypes. Molecular Biology and Evolution 25, 24932498.
O'Neill, S. L. (2016). Wolbachia mosquito control: tested. Science 352, 526526.
Paskewitz, S. M., Wesson, D. M. and Collins, F. H. (1993). The internal transcribed spacers of ribosomal DNA in five members of the Anopheles gambiae species complex. Insect Molecular Biology 2, 247257.
Pichaud, N., Ballard, J. W. O., Tanguay, R. M. and Blier, P. U. (2012). Naturally occurring mitochondrial DNA haplotypes exhibit metabolic differences: insight into functional properties of mitochondria. Evolution 66, 31893197.
Porter, C. H. and Collins, F. H. (1991). Species-diagnostic differences in a ribosomal DNA internal transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi (Diptera:Culicidae). American Journal of Tropical Medicine and Hygiene 45, 271279.
Rasgon, J. L., Cornel, A. J. and Scott, T. W. (2006). Evolutionary history of a mosquito endosymbiont revealed through mitochondrial hitchhiking. Proceedings of the Royal Society B – Biological Sciences 273, 16031611.
Ratnasingham, S. and Hebert, P. D. N. (2007). BOLD: the barcode of life data system ( Molecular Ecology Notes 7, 355364.
Reidenbach, K. R., Neafsey, D. E., Costantini, C., Sagnon, N., Simard, F., Ragland, G. J., Egan, S. P., Feder, J. L., Muskavitch, M. A. T. and Besansky, N. J. (2012). Patterns of genomic differentiation between ecologically differentiated M and S forms of Anopheles gambiae in West and Central Africa. Genome Biology and Evolution 4, 12021212.
Richly, E. and Leister, D. (2004). NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution 21, 10811084.
Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. and Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 24962497.
Ruiz-Lopez, F., Wilkerson, R. C., Ponsonby, D. J., Herrera, M., Sallum, M. A. M., Velez, I. D., Quinones, M. L., Flores-Mendoza, C., Chadee, D. D., Alarcon, J., Alarcon-Ormasa, J. and Linton, Y. M. (2013). Systematics of the Oswaldoi Complex (Anopheles, Nyssorhynchus) in South America. Parasites & Vectors 6, 113.
Schuler, H., Koppler, K., Daxbock-Horvath, S., Rasool, B., Krumbock, S., Schwarz, D., Hoffmeister, T. S., Schlick-Steiner, B. C., Steiner, F. M., Telschow, A., Stauffer, C., Arthofer, W. and Riegler, M. (2016). The hitchhiker's guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Molecular Ecology 25, 15951609.
Schultz, J. and Wolf, M. (2009). ITS2 sequence-structure analysis in phylogenetics: a how-to manual for molecular systematics. Molecular Phylogenetics and Evolution 52, 520523.
Shokralla, S., Gibson, J. F., Nikbakht, H., Janzen, D. H., Hallwachs, W. and Hajibabaei, M. (2014). Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Molecular Ecology Resources 14, 892901.
Shokralla, S., Porter, T. M., Gibson, J. F., Dobosz, R., Janzen, D. H., Hallwachs, W., Golding, G. B. and Hajibabaei, M. (2015). Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Scientific Reports 5, 17.
Slotman, M. A., Reimer, L. J., Theimann, T., Dolo, G., Fondjo, E. and Lanzaro, G. C. (2006). Reduced recombination rate and genetic differentiation between the M and S forms of Anopheles gambiae s.s. Genetics 174, 20812093.
Stump, A. D., Fitzpatrick, M. C., Lobo, N. F., Traore, S., Sagnon, N., Costantini, C., Collins, F. H. and Besansky, N. J. (2005). Centromere-proximal differentiation and speciation in Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America 102, 1593015935.
Surendran, S. N., Truelove, N., Sarma, D. K., Jude, P. J., Ramasamy, R., Gajapathy, K., Peiris, L. B. S., Karunaratne, S. H. P. P. and Walton, C. (2015). Karyotypic assignment of Sri Lankan Anopheles culicifacies species B and E does not correlate with cytochrome oxidase subunit I and microsatellite genotypes. Parasites & Vectors 8, 17.
Sweeney, A. W., Cooper, R. D. and Frances, S. P. (1990). Distribution of the sibling species of Anopheles farauti in the Cape York Peninsula, northern Queensland, Australia. Journal of the American Mosquito Control Association 6, 425429.
Tahir, H. M., Kanwal, N and Mehwish, (2016). The sequence divergence in cytochrome C oxidase I gene of Culex quinquefasciatus mosquito and its comparison with four other Culex species. Mitochondrial DNA A 27, 30543057.
Talbalaghi, A. and Shaikevich, E. (2011). Molecular approach for identification of mosquito species (Diptera: Culicidae) in Province of Alessandria, Piedmont, Italy. European Journal of Entomology 108, 3540.
Teletchea, F. (2010). After 7 years and 1000 citations: comparative assessment of the DNA barcoding and the DNA taxonomy proposals for taxonomists and non-taxonomists. Mitochondrial DNA 21, 206226.
Thelwell, N. J., Huisman, R. A., Harbach, R. E. and Butlin, R. K. (2000). Evidence for mitochondrial introgression between Anopheles bwambae and Anopheles gambiae. Insect Molecular Biology 9, 203210.
Torres-Gutierrez, C., Bergo, E. S., Emerson, K. J., de Oliveira, T. M. P., Greni, S. and Sallum, M. A. M. (2016). Mitochondrial COI gene as a tool in the taxonomy of mosquitoes Culex subgenus Melanoconion. Acta Tropica 164, 137149.
Turelli, M., Hoffmann, A. A. and Mckechnie, S. W. (1992). Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila-simulans populations. Genetics 132, 713723.
Vesgueiro, F. T., Demari-Silva, B., Malafronte, R. D., Sallum, M. A. M. and Marrelli, M. T. (2011). Intragenomic variation in the second internal transcribed spacer of the ribosomal DNA of species of the genera Culex and Lutzia (Diptera: Culicidae). Memorias Do Instituto Oswaldo Cruz 106, 18.
Wang, G., Li, C. X., Guo, X. X., Xing, D., Dong, Y. D., Wang, Z. M., Zhang, Y. M., Liu, M. D., Zheng, Z., Zhang, H. D., Zhu, X. J., Wu, Z. M. and Zhao, T. Y. (2012). Identifying the main mosquito species in China based on DNA barcoding. PLoS ONE 7, 111.
Weetman, D., Wilding, C. S., Steen, K., Pinto, J. and Donnelly, M. J. (2012). Gene flow-dependent genomic divergence between Anopheles gambiae M and S forms. Molecular Biology and Evolution 29, 279291.
Weetman, D., Steen, K., Rippon, E. J., Mawejje, H. D., Donnelly, M. J. and Wilding, C. S. (2014). Contemporary gene flow between wild An. gambiae s.s. and An. arabiensis. Parasites & Vectors 7, 279291.
Whitworth, T. L., Dawson, R. D., Magalon, H. and Baudry, E. (2007). DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proceedings of the Royal Society B – Biological Sciences 274, 17311739.
Yeap, H. L., Rasic, G., Endersby-Harshman, N. M., Lee, S. F., Arguni, E., Le Nguyen, H. and Hoffmann, A. A. (2016). Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations. Heredity 116, 265276.
Yeates, D. K., Seago, A., Nelson, L., Cameron, S. L., Joseph, L. and Trueman, J. W. H. (2011). Integrative taxonomy, or iterative taxonomy? Systematic Entomology 36, 209217.
Yeates, D. K., Zwick, A. and Mikheyev, A. S. (2016). Museums are biobanks: unlocking the genetic potential of the three billion specimens in the world's biological collections. Current Opinion in Insect Science 18, 8388.
Zinger, L. and Philippe, H. (2016). Coalescing molecular evolution and DNA barcoding. Molecular Ecology 25, 19081910.


Type Description Title
Supplementary materials

Beebe supplementary material
Table S1

 Unknown (53 KB)
53 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: