Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T10:40:49.423Z Has data issue: false hasContentIssue false

Diversity of Karyolysus and Schellackia from the Iberian lizard Lacerta schreiberi with sequence data from engorged ticks

Published online by Cambridge University Press:  02 September 2019

Kristína Zechmeisterová
Affiliation:
Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, Brno 612 42, Czech Republic
Joëlle Goüy de Bellocq
Affiliation:
Institute of Vertebrate Biology, Research Facility Studenec, The Czech Academy of Sciences, Květná 170/8, Brno 603 65, Czech Republic
Pavel Široký*
Affiliation:
Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, Brno 612 42, Czech Republic CEITEC-Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
*
Author for correspondence: Pavel Široký, E-mail: sirokyp@vfu.cz

Abstract

Apicomplexan haemoparasites of the genera Schellackia Reichenow, 1919, and Karyolysus Labbé, 1894, seem to be common in lizards and widespread across the world. For decades, their identification has been based on morphological descriptions and life cycle patterns, with molecular characterizations, applied only recently. We used molecular characterization to confirm the identification of haemoparasites detected by microscopy in blood smears of Lacerta schreiberi Bedriaga, 1878, a lizard of the Iberian Peninsula. Since blood samples other than blood smears were not available from the studied lizards, 264 engorged ticks Ixodes ricinus (Linneaus, 1758) collected from them were used as an alternative non-invasive source of haemoparasite DNA for molecular genetic analyses. Of the 48 blood smears microscopically examined, 31 were positive for blood parasites (64.6% prevalence). We identified trophozoites and gamonts similar to Karyolysus lacazei (Labbé, 1894) (24/48; 50%) and Schellackia-like sporozoites (20/48; 41.7%). Mixed infections with both species occurred in 13 blood smears (27.1%). Sequence data were obtained for both parasites from engorged ticks. Phylogenetic analyses placed our unique haemogregarine sequence within the Karyolysus clade, nevertheless, within substantial polytomy. Thus, according to its morphology and effect on the host cell, we refer to this haemogregarine as Karyolysus cf. lacazei. Besides the Schellackia sequences being identical to a previously identified haplotype, we also obtained sequences of three new closely related haplotypes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Calvo, JA (1975) Nuevas especies de hemococcidios en lacértidos españoles. Cuadernos de Ciencias Biológicas 4, 207222.Google Scholar
Bataille, A, Fournié, G, Cruz, M, Cedeño, V, Parker, PG, Cunningham, AA and Goodman, SJ (2012) Host selection and parasite infection in Aedes taeniorhynchus, endemic disease vector in the Galápagos Islands. Infection, Genetics and Evolution 12, 18311841.Google Scholar
Beyer, TV and Sidorenko, NV (1984) Karyolysus sp. (Haemogregarinidae, Adeleida, Apicomplexa): host–parasite relationships of persisting stages. Journal of Protozoology 31, 513517.Google Scholar
Billet, A (1904) Sur l'hémogrégarine du lézard ocellé d'Algérie. Comptes Rendus des Séances de la Société de Biologie 16, 186.Google Scholar
Bristovetzky, M and Paperna, I (1990) Life cycle and transmission of Schellackia cf. agamae, a parasite of the starred lizard Agama stellio. International Journal for Parasitology 20, 883892.Google Scholar
Conradie, R, Cook, CA, du Preez, LH, Jordaan, A and Netherlands, EC (2017) Ultrastructural comparison of Hepatozoon ixoxo and Hepatozoon theileri (Adeleorina: Hepatozoidae), parasitising South African anurans. Journal of Eukaryotic Microbiology 64, 193203.Google Scholar
Cook, CA, Netherlands, EC and Smit, NJ (2016) Redescription, molecular characterisation and taxonomic re-evaluation of a unique African monitor lizard haemogregarine Karyolysus paradoxa (Dias, 1954) n. comb. (Karyolysidae). Parasites & Vectors 9, 347.Google Scholar
Damas-Moreira, I, Harris, DJ, Rosado, D, Tavares, I, Maia, JP, Salvi, D and Perera, A (2014) Consequences of haemogregarine infection on the escape distance in the lacertid lizard, Podarcis vaucheri. Acta Herpetologica 9, 119123.Google Scholar
de Mello, F and de Meyrelles, CC (1937) On the classification and schizogonic cycle of a blood parasite of the Indian lizard Calotes versicolor Daud, subspecies major Blyth. Proceedings of the Indian Academy of Sciences - Section B 5, 119141.Google Scholar
Edgar, RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.Google Scholar
Estrada-Peña, A, Bouattour, A, Camicas, JL and Walker, AR (2004) Ticks of Domestic Animals in the Mediterranean Region. A Guide to Identification of Species. Zaragoza, Spain: University of Zaragoza.Google Scholar
Estrada-Peña, A, Nava, S and Petney, T (2014) Description of all the stages of Ixodes inopinatus n. sp. (Acari: Ixodidae). Ticks and Tick-borne Diseases. 5, 734743.Google Scholar
Finkelman, S and Paperna, I (1998) Schellackia calotesi n. sp. from agamid lizards of the genus Calotes in Thailand. Parasite 5, 2326.Google Scholar
Guindon, S and Gascuel, O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.Google Scholar
Haklová-Kočíková, B, Hižňanová, A, Majláth, I, Račka, K, Harris, DJ, Földvári, G, Tryjanowski, P, Kokošová, N, Malčeková, B and Majláthová, V (2014) Morphological and molecular characterization of Karyolysus – a neglected but common parasite infecting some European lizards. Parasites & Vectors 7, 555.Google Scholar
Hamšíková, Z, Silaghi, C, Rudolf, I, Venclíková, K, Mahríková, L, Slovák, M, Mendel, J, Blažejová, H, Berthová, L, Kocianová, E, Hubálek, Z, Schnittger, L and Kazimírová, M (2016) Molecular detection and phylogenetic analysis of Hepatozoon spp. in questing Ixodes ricinus ticks and rodents from Slovakia and Czech Republic. Parasitology Research 115, 38973904.Google Scholar
Harris, DJ, Graciá, E, Jorge, F, Maia, JPMC, Perera, A, Carretero, MA and Giménez, A (2013) Molecular detection of Hemolivia (Apicomplexa: Haemogregarinidae) from ticks of North African Testudo graeca (Testudines: Testudinidae) and an estimation of their phylogenetic relationships using 18S rRNA sequences. Comparative Parasitology 80, 292296.Google Scholar
Karadjian, G, Chavatte, JM and Landau, I (2015) Systematic revision of the adeleid haemogregarines, with creation of Bartazoon n. g., reassignment of Hepatozoon argantis Garnham, 1954 to Hemolivia, and molecular data on Hemolivia stellata. Parasite 22, 31.Google Scholar
Kearse, M, Moir, R, Wilson, A, Stones-Havas, S, Cheung, M, Sturrock, S, Buxton, S, Cooper, A, Markowitz, S, Duran, C, Thierer, T, Ashton, B, Meintjes, P and Drummond, A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28, 16471649.Google Scholar
Kubelová, M, Tkadlec, E, Bednář, M, Roubalová, E and Široký, P (2011) West-to-east differences of Babesia canis canis prevalence in Dermacentor reticulatus ticks in Slovakia. Veterinary Parasitology 180, 191196.Google Scholar
Kubelová, M, Papoušek, I, Bělohlávek, T, De Bellocq, JG, Baird, SJE and Široký, P (2015) Spotted fever group rickettsiae detected in immature stages of ticks parasitizing on Iberian endemic lizard Lacerta schreiberi Bedriaga, 1878. Ticks and Tick-borne Diseases 6, 711714.Google Scholar
Kvičerová, J, Pakandl, M and Hypša, V (2008) Phylogenetic relationships among Eimeria spp. (Apicomplexa, Eimeriidae) infecting rabbits: evolutionary significance of biological and morphological features. Parasitology 135, 443452.Google Scholar
Kvičerová, J, Hypša, V, Dvořáková, N, Mikulíček, P, Jandzik, D, Gardner, MG, Javanbakht, H, Tiar, G and Široký, P (2014) Hemolivia and Hepatozoon: haemogregarines with tangled evolutionary relationships. Protist 165, 688700.Google Scholar
Landau, I (1973) Diversité des mécanismes assurant la pérennité de l'infection chez lês sporozoaires coccidiomorphes. Memoirs du Museum national d'histoire naturelle (France). Nouvelle Serie. Serie A. Zoologie 77, 162.Google Scholar
Landau, I, Lainson, R, Boulard, Y and Shaw, JJ (1974) Transmission au laboratoire et description de l'Hémogrégarine Lainsonia legeri n. sp. (Lankesterellidae) parasite de Lézards brésiliens. Annales de Parasitologie Humaine et Comparée 49, 254263.Google Scholar
Le Bail, O and Landau, I (1974) Laboratoire Description et cycle biologique expérimental de Schellackia balli n. sp. (Lankesterellidae) parasite de Crapauds de Guyane. Annales de Parasitologie Humaine et Comparée 49, 663668.Google Scholar
Lefort, V, Longueville, JE and Gascuel, O (2017) SMS: Smart Model Selection in PhyML. Molecular Biology and Evolution 34, 24222424.Google Scholar
Maia, JPMC, Harris, DJ and Perera, A (2011) Molecular survey of Hepatozoon species in lizards from North Africa. Journal of Parasitology 97, 513517.Google Scholar
Maia, JPMC, Perera, A and Harris, DJ (2012) Molecular survey and microscopic examination of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) in lacertid lizards from the western Mediterranean. Folia Parasitologica 59, 241248.Google Scholar
Mangold, AJ, Bargues, MD and Mas-Coma, S (1998) Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitology Research 84, 478484.Google Scholar
Mathew, JS, Van Den Bussche, RA, Ewing, SA, Malayer, JR, Latha, BR and Panciera, RJ (2000) Phylogenetic relationships of Hepatozoon (apicomplexa: Adeleorina) based on molecular, morphologic, and life-cycle characters. Journal of Parasitology 86, 366372.Google Scholar
Megía-Palma, R, Martínez, J and Merino, S (2013) Phylogenetic analysis based on 18S rRNA gene sequences of Schellackia parasites (Apicomplexa: Lankesterellidae) reveals their close relationship to the genus Eimeria. Parasitology 140, 11491157.Google Scholar
Megía-Palma, R, Martínez, J and Merino, S (2014) Molecular characterization of haemococcidia genus Schellackia (apicomplexa) reveals the polyphyletic origin of the family Lankesterellidae. Zoologica Scripta 43, 304312.Google Scholar
Megía-Palma, R, Martínez, J, Cuervo, JJ, Belliure, J, Jiménez-Robles, O, Gomes, V, Cabido, C, Pausas, JG, Fitze, PS, Martín, J and Merino, S (2018) Molecular evidence for host–parasite co-speciation between lizards and Schellackia parasites. International Journal for Parasitology 48, 709718.Google Scholar
Mutinga, MJ and Dipeolu, OO (1989) Saurian malaria in Kenya: description of new species of haemoproteid and haemogregarine parasites, Anaplasma-like and Pirhemocyton-like organisms in the blood of lizards in West Pokot District. International Journal of Tropical Insect Science 10, 401412.Google Scholar
Netherlands, EC, Cook, CA, Smit, NJ and du Preez, LH (2014) Redescription and molecular diagnosis of Hepatozoon theileri (Laveran, 1905) (Apicomplexa: Adeleorina: Hepatozoidae), infecting Amietia quecketti (Anura: Pyxicephalidae). Folia Parasitologica 61, 293300.Google Scholar
Nosek, J and Sixl, W (1972) Central European ticks (Ixodoidea): key for determination. Mitteilungen der Abteilung fuer Zoologie am Landesmuseum Joanneum 1, 6192.Google Scholar
Paperna, I and Lainson, R (1995) Schellackia (Apicomplexa: Eimeriidae) of the Brazilian Tree-Frog, Phrynohyas venulosa (Amphibia: Anura) from Amazonian Brazil. Memorias do Instituto Oswaldo Cruz 90, 589592.Google Scholar
Reichenow, E (1913) Karyolysus lacertae, ein wirtwechselndes Coccidium der Eidechse Lacerta muralis und der Milbe Liponyssys saurarum. Arbeiten aus dem Gesundheitsamte Berlin 45, 317363.Google Scholar
Reichenow, E (1919) Der Entwicklungsgang der Hämococcidien Karyolysus und Schellackia nov. gen. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin 10, 440447.Google Scholar
Rijpkema, S, Golubić, D, Molkenboer, M, Verbeek-De Kruif, N and Schellekens, J (1996) Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Experimental and Applied Acarology 20, 2330.Google Scholar
Ronquist, F and Huelsenbeck, JP (2003) Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 15721574.Google Scholar
Široký, P, Kamler, M and Modrý, D (2004) Long-term occurrence of Hemolivia cf. mauritanica (apicomplexa: Adeleina: Haemogregarinidae) in captive Testudo marginata (Reptilia: Testudinidae): evidence for cyclic merogony? Journal of Parasitology 90, 13911393.Google Scholar
Široký, P, Kamler, M, Frye, FL, Fictum, P and Modrý, D (2007) Endogenous development of Hemolivia mauritanica (Apicomplexa: Adeleina: Haemogregarinidae) in the marginated tortoise Testudo marginata (Reptilia: Testudinidae): evidence from experimental infection. Folia Parasitologica 54, 1318.Google Scholar
Sloboda, M, Kamler, M, Bulantová, J, Votýpka, J and Modrý, D (2007) A New Species of Hepatozoon (apicomplexa: Adeleorina) from Python regius (Serpentes: Pythonidae) and its experimental transmission by a mosquito vector. Journal of Parasitology 93, 11891198.Google Scholar
Stöver, BC and Müller, KF (2010) Treegraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11, 7.Google Scholar
Stuart-Fox, D, Godinho, R, de Bellocq, JG, Irwin, NR, Brito, JC, Moussalli, A, Široký, P, Hugall, AF and Baird, SJE (2009) Variation in phenotype, parasite load and male competitive ability across a cryptic hybrid zone. PLoS ONE 4, e5677.Google Scholar
Svahn, K (1974) Incidence of blood parasites of the genus Karyolysus (coccidia) in Scandinavian lizards. Oikos 25, 4353.Google Scholar
Svahn, K (1975) Blood parasites of the genus Karyolysus (coccidia, Adeleidae) in Scandinavian lizards. Description and life cycle. Norwegian Journal of Zoology 23, 277295.Google Scholar
Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M and Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
Telford, SR Jr (2009) Hemoparasites of the Reptilia: Color Atlas and Text. Boca Raton, Florida, USA: CRC Press, Taylor & Francis Group.Google Scholar
Tomé, B, Maia, JPMC and Harris, DJ (2012) Hepatozoon infection prevalence in four snake genera: influence of diet, prey parasitemia levels, or parasite type? Journal of Parasitology 98, 913917.Google Scholar
Tomé, B, Maia, JPMC and Harris, DJ (2013) Molecular assessment of apicomplexan parasites in the snake Psammophis from North Africa: do multiple parasite lineages reflect the final vertebrate host diet? Journal of Parasitology 99, 883887.Google Scholar
Tomé, B, Rato, C, Perera, A and Harris, DJ (2016) High diversity of Hepatozoon spp. in geckos of the genus Tarentola. Journal of Parasitology 102, 476480.Google Scholar
Tomé, B, Pereira, A, Harris, DJ, Carretero, MA and Perera, A (2019) A paradise for parasites? Seven new haemogregarine species infecting lizards from the Canary Islands. Parasitology 146, 728739.Google Scholar
Upton, SJ (2000) The Illustrated Guide to the Protozoa, vol. 1. Lawrence, Kansas, USA: Allen Press.Google Scholar
Vilcins, IME, Ujvari, B, Old, JM and Deane, E (2009) Molecular and morphological description of a Hepatozoon species in reptiles and their ticks in the Northern Territory, Australia. Journal of Parasitology 95, 434442.Google Scholar
Supplementary material: File

Zechmeisterová et al. supplementary material

Zechmeisterová et al. supplementary material

Download Zechmeisterová et al. supplementary material(File)
File 1.1 MB