Skip to main content Accessibility help
×
Home

Determination of antiprotozoal drug mechanisms by metabolomics approaches

  • DARREN J. CREEK (a1) (a2) and MICHAEL P. BARRETT (a2)

Summary

The discovery, development and optimal utilization of pharmaceuticals can be greatly enhanced by knowledge of their modes of action. However, many drugs currently on the market act by unknown mechanisms. Untargeted metabolomics offers the potential to discover modes of action for drugs that perturb cellular metabolism. Development of high resolution LC-MS methods and improved data analysis software now allows rapid detection of drug-induced changes to cellular metabolism in an untargeted manner. Several studies have demonstrated the ability of untargeted metabolomics to provide unbiased target discovery for antimicrobial drugs, in particular for antiprotozoal agents. Furthermore, the utilization of targeted metabolomics techniques has enabled validation of existing hypotheses regarding antiprotozoal drug mechanisms. Metabolomics approaches are likely to assist with optimization of new drug candidates by identification of drug targets, and by allowing detailed characterization of modes of action and resistance of existing and novel antiprotozoal drugs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Determination of antiprotozoal drug mechanisms by metabolomics approaches
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Determination of antiprotozoal drug mechanisms by metabolomics approaches
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Determination of antiprotozoal drug mechanisms by metabolomics approaches
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .

Corresponding author

*Corresponding author. Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. Tel: (+61) 3 8344 2351. Fax: (+61) 3 9348 1421. E-mail: darrencreek@gmail.com

References

Hide All
Ali, J. A. M., Creek, D. J., Burgess, K., Allison, H. C., Field, M. C., Mäser, P. and De Koning, H. P. (2013). Pyrimidine salvage in Trypanosoma brucei bloodstream forms and the trypanocidal action of halogenated pyrimidines. Molecular Pharmacology 83, 439453. doi:10.1124/mol.112.082321.
Anthony, M. P., Burrows, J. N., Duparc, S., Moehrle, J. J. and Wells, T. N. (2012). The global pipeline of new medicines for the control and elimination of malaria. Malaria Journal 11, 316. doi:10.1186/1475-2875-11-316.
Barrett, M. P., Boykin, D. W., Brun, R. and Tidwell, R. R. (2007). Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. British Journal of Pharmacology 152, 11551171. doi:10.1038/sj.bjp.0707354.
Barrett, M. P. and Croft, S. L. (2012). Management of trypanosomiasis and leishmaniasis. British Medical Bulletin 104, 174196. doi:10.1093/bmb/lds031.
Beyoğlu, D. and Idle, J. R. (2013). Metabolomics and its potential in drug development. Biochemical Pharmacology 85, 1220. doi:10.1016/j.bcp.2012.08.013.
Biagini, G. A., Fisher, N., Shone, A. E., Mubaraki, M. A., Srivastava, A., Hill, A., Antoine, T., Warman, A. J., Davies, J., Pidathala, C., Amewu, R. K., Leung, S. C., Sharma, R., Gibbons, P., Hong, D. W., Pacorel, B., Lawrenson, A. S., Charoensutthivarakul, S., Taylor, L., Berger, O., Mbekeani, A., Stocks, P. A., Nixon, G. L., Chadwick, J., Hemingway, J., Delves, M. J., Sinden, R. E., Zeeman, A.-M., Kocken, C. H. M., Berry, N. G., O'Neill, P. M. and Ward, S. A. (2012). Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proceedings of the National Academy of Sciences, USA 109, 82988303. doi:10.1073/pnas.1205651109.
Birkenstock, T., Liebeke, M., Winstel, V., Krismer, B., Gekeler, C., Niemiec, M. J., Bisswanger, H., Lalk, M. and Peschel, A. (2012). Exometabolome analysis identifies pyruvate dehydrogenase as a target for the antibiotic triphenylbismuthdichloride in multiresistant bacterial pathogens. Journal of Biological Chemistry 287, 28872895. doi:10.1074/jbc.M111.288894.
Brun, R., Don, R., Jacobs, R. T., Wang, M. Z. and Barrett, M. P. (2011). Development of novel drugs for human African trypanosomiasis. Future Microbiology 6, 677691. doi:10.2217/fmb.11.44.
Canuto, G. A. B., Castilho-Martins, E. A., Tavares, M., López-Gonzálvez, Á., Rivas, L. and Barbas, C. (2012). CE-ESI-MS metabolic fingerprinting of Leishmania resistance to antimony treatment. Electrophoresis 33, 19011910. doi:10.1002/elps.201200007.
Chawla, B., Jhingran, A., Panigrahi, A., Stuart, K. D. and Madhubala, R. (2011). Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin –susceptible –resistant Leishmania donovani. PLoS ONE 6, e26660. doi:10.1371/journal.pone.0026660.
Creek, D. J., Anderson, J., McConville, M. J. and Barrett, M. P. (2012 a). Metabolomic analysis of trypanosomatid protozoa. Molecular and Biochemical Parasitology 181, 7384. doi:10.1016/j.molbiopara.2011.10.003.
Creek, D. J., Jankevics, A., Breitling, R., Watson, D. G., Barrett, M. P. and Burgess, K. E. V. (2011). Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction. Analytical Chemistry 83, 87038710. doi:10.1021/ac2021823.
Creek, D. J., Jankevics, A., Burgess, K. E. V., Breitling, R. and Barrett, M. P. (2012 b). IDEOM: an Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics 28, 10481049. doi:10.1093/bioinformatics/bts069.
Cubbon, S., Antonio, C., Wilson, J. and Thomas-Oates, J. (2009). Metabolomic applications of HILIC–LC–MS. Mass Spectrometry Reviews 29, 671684. doi:10.1002/mas.20252.
Cuperlovic-Culf, M., Barnett, D. A., Culf, A. S. and Chute, I. (2010). Cell culture metabolomics: applications and future directions. Drug Discovery Today 15, 610621. doi:10.1016/j.drudis.2010.06.012.
Dondorp, A. M., Nosten, F., Yi, P., Das, D., Phyo, A. P., Tarning, J., Lwin, K. M., Ariey, F., Hanpithakpong, W., Lee, S. J., Ringwald, P., Silamut, K., Imwong, M., Chotivanich, K., Lim, P., Herdman, T., An, S. S., Yeung, S., Singhasivanon, P., Day, N. P. J., Lindegardh, N., Socheat, D. and White, N. J. (2009). Artemisinin resistance in Plasmodium falciparum malaria. New England Journal of Medicine 361, 455467. doi:10.1056/NEJMoa0808859.
Duffy, S. and Avery, V. M. (2012). Development and optimization of a novel 384-well anti-malarial imaging assay validated for high-throughput screening. American Journal of Tropical Medicine and Hygiene 86, 8492. doi:10.4269/ajtmh.2012.11-0302.
Dunn, W., Bailey, N. and Johnson, H. (2005). Measuring the metabolome: current analytical technologies. Analyst 130, 606625. doi:10.1039/B418288J.
Dunn, W. B., Erban, A., Weber, R. J. M., Creek, D. J., Brown, M., Breitling, R., Hankemeier, T., Goodacre, R., Neumann, S., Kopka, J. and Viant, M. R. (2013). Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 9, 4466. doi:10.1007/s11306-012-0434-4.
Gamo, F.-J., Sanz, L. M., Vidal, J., de Cozar, C., Alvarez, E., Lavandera, J.-L., Vanderwall, D. E., Green, D. V. S., Kumar, V., Hasan, S., Brown, J. R., Peishoff, C. E., Cardon, L. R. and Garcia-Bustos, J. F. (2010). Thousands of chemical starting points for antimalarial lead identification. Nature 465, 305310. doi:10.1038/nature09107.
Gao, P., Shi, C., Tian, J., Shi, X., Yuan, K., Lu, X. and Xu, G. (2007). Investigation on response of the metabolites in tricarboxylic acid cycle of Escherichia coli and Pseudomonas aeruginosa to antibiotic perturbation by capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis 44, 180187. doi:10.1016/j.jpba.2007.02.015.
Grishin, N. V., Osterman, A. L., Brooks, H. B., Phillips, M. A. and Goldsmith, E. J. (1999). X-ray structure of ornithine decarboxylase from Trypanosoma brucei: the native structure and the structure in complex with α-difluoromethylornithine. Biochemistry 38, 1517415184. doi:10.1021/bi9915115.
Guiguemde, W. A., Shelat, A. A., Bouck, D., Duffy, S., Crowther, G. J., Davis, P. H., Smithson, D. C., Connelly, M., Clark, J., Zhu, F., Jiménez-Díaz, M. B., Martinez, M. S., Wilson, E. B., Tripathi, A. K., Gut, J., Sharlow, E. R., Bathurst, I., Mazouni, F. E., Fowble, J. W., Forquer, I., McGinley, P. L., Castro, S., Angulo-Barturen, I., Ferrer, S., Rosenthal, P. J., DeRisi, J. L., Sullivan, D. J., Lazo, J. S., Roos, D. S., Riscoe, M. K., Phillips, M. A., Rathod, P. K., Van Voorhis, W. C., Avery, V. M. and Guy, R. K. (2010). Chemical genetics of Plasmodium falciparum. Nature 465, 311315. doi:10.1038/nature09099.
Guiguemde, W. A., Shelat, A. A., Garcia-Bustos, J. F., Diagana, T. T., Gamo, F.-J. and Guy, R. K. (2012). Global phenotypic screening for antimalarials. Chemistry and Biology 19, 116129. doi:10.1016/j.chembiol.2012.01.004.
Hall, B. S., Bot, C. and Wilkinson, S. R. (2011). Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. Journal of Biological Chemistry 286, 1308813095. doi:10.1074/jbc.M111.230847.
Halouska, S., Chacon, O., Fenton, R. J., Zinniel, D. K., Barletta, R. G. and Powers, R. (2007). Use of NMR metabolomics to analyze the targets of d-cycloserine in Mycobacteria: role of d-alanine racemase. Journal of Proteome Research 6, 46084614. doi:10.1021/pr0704332.
Halouska, S., Fenton, R. J., Barletta, R. G. and Powers, R. (2012). Predicting the in vivo mechanism of action for drug leads using NMR metabolomics. ACS Chemical Biology 7, 166171. doi:10.1021/cb200348m.
Hirumi, H. and Hirumi, K. (1989). Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. Journal of Parasitology 75, 985989.
Jankevics, A., Merlo, M. E., de Vries, M., Vonk, R., Takano, E. and Breitling, R. (2011). Separating the wheat from the chaff: a prioritisation pipeline for the analysis of metabolomics datasets. Metabolomics 8(Suppl 1), 2936. doi:10.1007/s11306-011-0341-0.
Jourdan, F., Cottret, L., Huc, L., Wildridge, D., Scheltema, R., Hillenweck, A., Barrett, M., Zalko, D., Watson, D. and Debrauwer, L. (2010). Use of reconstituted metabolic networks to assist in metabolomic data visualization and mining. Metabolomics 6, 312321. doi:10.1007/s11306-009-0196-9.
Keiser, M. J., Irwin, J. J. and Shoichet, B. K. (2010). The chemical basis of pharmacology. Biochemistry 49, 10267.
Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. and Neumann, S. (2011). CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry 84, 283289. doi:10.1021/ac202450g.
Kwon, Y. K., Lu, W., Melamud, E., Khanam, N., Bognar, A. and Rabinowitz, J. D. (2008). A domino effect in antifolate drug action in Escherichia coli. Nature Chemical Biology 4, 602608. doi:10.1038/nchembio.108.
Leader, D. P., Burgess, K., Creek, D. and Barrett, M. P. (2011). Pathos: a web facility that uses metabolic maps to display experimental changes in metabolites identified by mass spectrometry. Rapid Communications in Mass Spectrometry 25, 34223426. doi:10.1002/rcm.5245.
Liland, K. H. (2011). Multivariate methods in metabolomics – from pre-processing to dimension reduction and statistical analysis. TrAC Trends in Analytical Chemistry 30, 827841. doi:10.1016/j.trac.2011.02.007.
Liu, Y., Wen, J., Wang, Y., Li, Y. and Xu, W. (2009). Postulating modes of action of compounds with antimicrobial activities through metabolomics analysis. Chromatographia 71, 253258. doi:10.1365/s10337-009-1447-7.
Lommen, A. (2009). MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Analytical Chemistry 81, 30793086. doi:10.1021/ac900036d.
Loria, P., Miller, S., Foley, M. and Tilley, L. (1999). Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochemical Journal 339(Pt 2), 363370.
Lux, H., Heise, N., Klenner, T., Hart, D. and Opperdoes, F. R. (2000). Ether–lipid (alkyl-phospholipid) metabolism and the mechanism of action of ether–lipid analogues in Leishmania. Molecular and Biochemical Parasitology 111, 114. doi:10.1016/S0166-6851(00)00278-4.
MacBeath, G., Koehler, A. N. and Schreiber, S. L. (1999). Printing small molecules as microarrays and detecting protein-ligand interactions en masse. Journal of the American Chemical Society 121, 79677968.
Meshnick, S. (2012). Perspective: artemisinin-resistant malaria and the wolf. American Journal of Tropical Medicine and Hygiene 87, 783784. doi:10.4269/ajtmh.2012.12-0388.
Munger, J., Bennett, B. D., Parikh, A., Feng, X.-J., McArdle, J., Rabitz, H. A., Shenk, T. and Rabinowitz, J. D. (2008). Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nature Biotechnology 26, 11791186. doi:10.1038/nbt.1500.
Naderer, T. and McConville, M. J. (2008). The Leishmania–macrophage interaction: a metabolic perspective. Cellular Microbiology 10, 301308. doi:10.1111/j.1462-5822.2007.01096.x.
Nosten, F. and White, N. J. (2007). Artemisinin-based combination treatment of falciparum malaria. American Journal of Tropical Medicine and Hygiene 77(6 Suppl), 181192.
Olliaro, P. (2001). Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacology and Therapeutics 89, 207219. doi:10.1016/S0163-7258(00)00115-7.
O'Neill, P. M., Barton, V. E. and Ward, S. A. (2010). The molecular mechanism of action of artemisinin — the debate continues. Molecules 15, 17051721. doi:10.3390/molecules15031705.
Ouellette, M., Drummelsmith, J. and Papadopoulou, B. (2004). Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resistance Updates 7, 257266. doi:10.1016/j.drup.2004.07.002.
Paley, S. M. and Karp, P. D. (2006). The Pathway Tools cellular overview diagram and Omics Viewer. Nucleic Acids Research 34, 37713778. doi:10.1093/nar/gkl334.
Phillips, M. A. (2012). Stoking the drug target pipeline for human African trypanosomiasis. Molecular Microbiology 86, 1014. doi:10.1111/mmi.12001.
Pink, R., Hudson, A., Mouries, M.-A. and Bendig, M. (2005). Opportunities and challenges in antiparasitic drug discovery. Nature Reviews Drug Discovery 4, 727740. doi:10.1038/nrd1824.
Pluskal, T., Castillo, S., Villar-Briones, A. and Oresic, M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395. doi: 10.1186/1471-2105-11-395.
Renslo, A. R. and McKerrow, J. H. (2006). Drug discovery and development for neglected parasitic diseases. Nature Chemical Biology 2, 701710. doi:10.1038/nchembio837.
Rogers, S., Scheltema, R. A., Girolami, M. and Breitling, R. (2009). Probabilistic assignment of formulas to mass peaks in metabolomics experiments. Bioinformatics 25, 512518. doi:10.1093/bioinformatics/btn642.
Saunders, E. C., Ng, W. W., Chambers, J. M., Ng, M., Naderer, T., Kramer, J. O., Likic, V. A. and McConville, M. J. (2011). Isotopomer profiling of Leishmania mexicana promastigotes reveals important roles for succinate fermentation and aspartate uptake in tricarboxylic scid cycle (TCA) anaplerosis, glutamate synthesis, and growth. Journal of Biological Chemistry 286, 2770627717. doi:10.1074/jbc.M110.213553.
Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B., van Ommen, B., Pujos-Guillot, E., Verheij, E., Wishart, D. and Wopereis, S. (2009). Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5, 435458. doi:10.1007/s11306-009-0168-0.
Scheltema, R. A., Decuypere, S., t'Kindt, R., Dujardin, J.-C., Coombs, G. H. and Breitling, R. (2010). The potential of metabolomics for Leishmania research in the post-genomics era. Parasitology 137, 12911302. doi:10.1017/S0031182009992022.
Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A. and Breitling, R. (2011). PeakML/mzMatch: a file format, java library, R library, and tool-chain for mass spectrometry data analysis. Analytical Chemistry 83, 27862793. doi:10.1021/ac2000994.
Sienkiewicz, N., Jaroslawski, S., Wyllie, S. and Fairlamb, A. H. (2008). Chemical and genetic validation of dihydrofolate reductase-thymidylate synthase as a drug target in African trypanosomes. Molecular Microbiology 69, 520533. doi:10.1111/1365-2958.2008.06305x.
Singh, N., Kumar, M. and Singh, R. K. (2012). Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine 5, 485497. doi:10.1016/S1995-7645(12)60084-4.
Smith, C., Want, E., O'Maille, G., Abagyan, R. and Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry 78, 779787. doi:10.1021/ac051437y.
Sumner, L., Amberg, A., Barrett, D., Beale, M., Beger, R., Daykin, C., Fan, T., Fiehn, O., Goodacre, R., Griffin, J., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A., Lindon, J., Marriott, P., Nicholls, A., Reily, M., Thaden, J. and Viant, M. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211221. doi:10.1007/s11306-007-0082-2.
Sykes, M. L., Baell, J. B., Kaiser, M., Chatelain, E., Moawad, S. R., Ganame, D., Ioset, J.-R. and Avery, V. M. (2012). Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign. PLoS Neglected Tropical Diseases 6, e1896. doi:10.1371/journal.pntd.0001896.
Theodoridis, G. A., Gika, H. G., Want, E. J. and Wilson, I. D. (2012). Liquid chromatography–mass spectrometry based global metabolite profiling: a review. Analytica Chimica Acta 711, 716. doi:10.1016/j.aca.2011.09.042.
t'Kindt, R., Jankevics, A., Scheltema, R., Zheng, L., Watson, D., Dujardin, J.-C., Breitling, R., Coombs, G. and Decuypere, S. (2010 b). Towards an unbiased metabolic profiling of protozoan parasites: optimisation of a Leishmania sampling protocol for HILIC-orbitrap analysis. Analytical and Bioanalytical Chemistry 398, 20592069. doi:10.1007/s00216-010-4139-0.
t'Kindt, R., Scheltema, R. A., Jankevics, A., Brunker, K., Rijal, S., Dujardin, J.-C., Breitling, R., Watson, D. G., Coombs, G. H. and Decuypere, S. (2010 a). Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Neglected Tropical Diseases 4, e904. doi:10.1371/journal.pntd.0000904.
van Brummelen, A. C., Olszewski, K. L., Wilinski, D., Llinas, M., Louw, A. I. and Birkholtz, L. M. (2009). Co-inhibition of Plasmodium falciparum S-adenosylmethionine decarboxylase/ornithine decarboxylase reveals perturbation-specific compensatory mechanisms by transcriptome, proteome, and metabolome analyses. Journal of Biological Chemistry 284, 46354646. doi:10.1074/jbc.M807085200.
Vinaixa, M., Samino, S., Saez, I., Duran, J., Guinovart, J. J. and Yanes, O. (2012). A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites 2, 775795. doi:10.3390/metabo2040775.
Vincent, I. M., Creek, D., Watson, D. G., Kamleh, M. A., Woods, D. J., Wong, P. E., Burchmore, R. J. S. and Barrett, M. P. (2010). A molecular mechanism for eflornithine resistance in African trypanosomes. PLoS Pathogens 6, e1001204. doi:10.1371/journal.ppat.1001204.
Vincent, I. M., Creek, D. J., Burgess, K., Woods, D. J., Burchmore, R. J. S. and Barrett, M. P. (2012). Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. PLoS Neglected Tropical Diseases 6, e1618. doi:10.1371/journal.pntd.0001618.
Weber, R. J. M. and Viant, M. R. (2010). MI-Pack: increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometrics and Intelligent Laboratory Systems 104, 7582. doi:10.1016/j.chemolab.2010.04.010.
Weber, R. J. M., Li, E., Bruty, J., He, S. and Viant, M. R. (2012). MaConDa: a publicly accessible mass spectrometry contaminants database. Bioinformatics 28, 28562857. doi:10.1093/bioinformatics/bts527.
Wells, T. N. C., Alonso, P. L. and Gutteridge, W. E. (2009). New medicines to improve control and contribute to the eradication of malaria. Nature Reviews Drug Discovery 8, 879891. doi:10.1038/nrd2972.
White, N. J. (2012). Counter perspective: artemisinin resistance: facts, fears, and fables. American Journal of Tropical Medicine and Hygiene 87, 785. doi:10.4269/ajtmh.2012.12-0573.
Yamada, T., Letunic, I., Okuda, S., Kanehisa, M. and Bork, P. (2011). iPath2·0: interactive pathway explorer. Nucleic Acids Research 39(Suppl 2), W412W415. doi:10.1093/nar/gkr313.
Yuthavong, Y., Tarnchompoo, B., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., Charman, S. A., McLennan, D. N., White, K. L., Vivas, L., Bongard, E., Thongphanchang, C., Taweechai, S., Vanichtanankul, J., Rattanajak, R., Arwon, U., Fantauzzi, P., Yuvaniyama, J., Charman, W. N. and Matthews, D. (2012). Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proceedings of the National Academy of Sciences, USA 109, 1682316828. doi:10.1073/pnas.1204556109.
Zhang, B., Watts, K. M., Hodge, D., Kemp, L. M., Hunstad, D. A., Hicks, L. M. and Odom, A. R. (2011). A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. Biochemistry 50, 35703577. doi:10.1021/bi200113y.
Zhang, T., Creek, D. J., Barrett, M. P., Blackburn, G. and Watson, D. G. (2012). Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with Orbitrap mass spectrometry for metabolomic studies of human urine. Analytical Chemistry 84, 19942001. doi:10.1021/ac2030738.

Keywords

Determination of antiprotozoal drug mechanisms by metabolomics approaches

  • DARREN J. CREEK (a1) (a2) and MICHAEL P. BARRETT (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed