Skip to main content Accessibility help

Cryptosporidium cell culture infectivity assay design

  • B. J. KING (a1), A. R. KEEGAN (a1), B. S. ROBINSON (a1) and P. T. MONIS (a1)


Members of the genus Cryptosporidium, which cause the gastrointestinal disease cryptosporidiosis, still represent a significant cause of water-borne disease worldwide. While intensive efforts have been invested in the development of techniques for parasite culture, in vitro growth has been hampered by a number of factors including low levels of infectivity as well as delayed life-cycle development and poor synchronicity. In this study we examined factors affecting the timing of contact between excysted sporozoites and target host cells and the subsequent impact of this upon the establishment of infection. We demonstrate that excystation rate impacts upon establishment of infection and that in our standard assay format the majority of sporozoites are not close enough to the cell monolayer when they are released from the oocyst to successfully establish infection. However, this can be easily overcome by centrifugation of oocysts onto the cell monolayer, resulting in approximately 4-fold increases in sporozoite attachment and subsequent infection. We further demonstrate that excystation procedures can be tailored to control excystation rate to match the assay end purpose and that excystation rate can influence data interpretation. Finally, the addition of both a centrifugation and washing step post-sporozoite attachment may be appropriate when considering the design of in vitro culture experiments for developmental analysis and stage-specific gene expression as this appears to increase the synchronicity of early developmental stages.


Corresponding author

*Corresponding author: Tel: +61 8 742 42114. E-mail:


Hide All
Arrowood, M. J. (2002). In vitro cultivation of Cryptosporidium species. Clinical Microbiology Reviews 15, 390400.
Beaudeau, P., De Valk, H., Vaillant, V., Mannschott, C., Tillier, C., Mouly, D. and Ledrans, M. (2008). Lessons learned from ten investigations of waterborne gastroenteritis outbreaks, France, 1998–2006. Journal of Water and Health 6, 491503.
Borowski, H., Clode, P. L. and Thompson, R. C. (2008). Active invasion and/or encapsulation? A reappraisal of host-cell parasitism by Cryptosporidium. Trends in Parasitology 24, 509516.
Borowski, H., Thompson, R. C. A., Armstrong, T. and Clode, P. L. (2010). Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system. Parasitology 137, 1326.
Chen, X. M., O'Hara, S. P., Huang, B. Q., Nelson, J. B., Lin, J. J., Zhu, G., Ward, H. D. and Larusso, N. F. (2004). Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and intracellular calcium dependent and required for host cell invasion. Infection and Immunity 72, 68066816.
Connelly, S. J., Wolyniak, E. A., Williamson, C. E. and Jellison, K. L. (2007). Artificial UV-B and solar radiation reduce in vitro infectivity of the human pathogen Cryptosporidium parvum. Environmental Science & Technology 41, 71017106.
Feng, H. P., Nie, W. J., Sheoran, A., Zhang, Q. S. and Tzipori, S. (2006). Bile acids enhance invasiveness of Cryptosporidium spp. into cultured cells. Infection and Immunity 74, 33423346.
Hijjawi, N. S., Meloni, B. P., Morgan, U. M. and Thompson, R. C. A. (2001). Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture. International Journal for Parasitology 31, 10481055.
Huang, B. Q., Chen, X. M. and Larusso, N. F. (2004). Cryptosporidium parvum attachment to and internalization by human biliary epithelia in vitro: A morphologic study. Journal of Parasitology 90, 212221.
Ives, R. L., Kamarainen, A. M., John, D. E. and Rose, J. B. (2007). Use of cell culture to assess Cryptosporidium parvum survival rates in natural groundwaters and surface waters. Applied and Environmental Microbiology 73, 59685970.
Keegan, A. R., Fanok, S., Monis, P. T. and Saint, C. P. (2003). Cell culture-Taqman PCR assay for evaluation of Cryptosporidium parvum disinfection. Applied and Environmental Microbiology 69, 25052511.
Kim, S. B. and Corapcioglu, M. Y. (2002). Vertical transport of Cryptosporidium parvum oocysts through sediments. Environmental Technology 23, 14351446.
King, B. J., Hoefel, D., Lim, S. P., Robinson, B. S. and Monis, P. T. (2009). Flow cytometric assessment of distinct physiological stages within Cryptosporidium parvum sporozoites post-excystation. Parasitology 136, 953966.
King, B. J., Keegan, A. R., Monis, P. T. and Saint, C. P. (2005). Environmental temperature controls Cryptosporidium oocyst metabolic rate and associated retention of infectivity. Applied and Environmental Microbiology 71, 38483857.
Lalancette, C., Di Giovanni, G. D. and Prevost, M. (2010). Improved risk analysis by dual direct detection of total and infectious Cryptosporidium oocysts on cell culture in combination with immunofluorescence assay. Applied and Environmental Microbiology 76, 566577.
LeChevallier, M. W., Di Giovanni, G. D., Clancy, J. L., Bukhari, Z., Bukhari, S., Rosen, J. S., Sobrinho, J. and Frey, M. M. (2003). Comparison of method 1623 and cell culture-PCR for detection of Cryptosporidium spp. in source waters. Applied and Environmental Microbiology 69, 971979.
Li, L. J. and Haas, C. N. (2004). Inactivation of Cryptosporidium parvum with ozone in treated drinking water. Journal of Water Supply Research and Technology-Aqua 53, 287297.
Mason, B. W., Chalmers, R. M., Carnicer-Pont, D. and Casemore, D. P. (2010). A Cryptosporidium hominis outbreak in North-West Wales associated with low oocyst counts in treated drinking water. Journal of Water and Health 8, 299310.
Matsubayashi, M., Ando, H., Kimata, I., Nakagawa, H., Furuya, M., Tani, H. and Sasai, K. (2010). Morphological changes and viability of Cryptosporidium parvum sporozoites after excystation in cell-free culture media. Parasitology 137, 18611866.
Quintero-Betancourt, W., Gennaccaro, A. L., Scott, T. M. and Rose, J. B. (2003). Assessment of methods for detection of infectious Cryptosporidium oocysts and Giardia cysts in reclaimed effluents. Applied and Environmental Microbiology 69, 53805388.
Rochelle, P. A., Ferguson, D. M., Johnson, A. M. and De Leon, R. (2001). Quantitation of Cryptosporidium parvum infection in cell culture using a colorimetric in situ hybridization assay. Journal of Eukaryotic Microbiology 48, 565574.
Schets, F. M., Engels, G. B., During, A. and Husman, A. A. D. (2005). Detection of infectious Cryptosporidium oocysts by cell culture immunofluorescence assay: Applicability to environmental samples. Applied and Environmental Microbiology 71, 67936798.
Searcy, K. E., Packman, A. I., Atwill, E. R. and Harter, T. (2005). Association of Cryptosporidium parvum with suspended particles: Impact on oocyst sedimentation. Applied and Environmental Microbiology 71, 10721078.
Slifko, T. R., Freidman, D., Rose, J. B. and Jakubowski, W. (1997). An in vitro method for detecting infectious Cryptosporidium oocysts with cell culture. Applied and Environmental Microbiology 63, 36693675.
Smith, H. V., Robertson, L. J. and Ongerth, J. E. (1995). Cryptosporidiosis and giardiasis: The impact of waterborne transmission. Journal of Water Supply Research and Technology-Aqua 44, 258274.
Upton, S. J., Tilley, M., Nesterenko, M. V. and Brillhart, D. B. (1994). A simple and reliable method of producing in-vitro infections of Cryptosporidium-parvum (Apicomplexa). FEMS Microbiology Letters 118, 4549.
Vesey, G., Griffiths, K. R., Gauci, M. R., Deere, D., Williams, K. L. and Veal, D. A. (1997). Simple and rapid measurement of Cryptosporidium excystation using flow cytometry. International Journal for Parasitology 27, 13531359.
Weir, S. C., Pokorny, N. J., Carreno, R. A., Trevors, J. T. and Lee, H. (2001). Improving the rate of infectivity of Cryptosporidium parvum oocysts in cell culture using centrifugation. Journal of Parasitology 87, 15021504.
Wetzel, D. M., Schmidt, J., Kuhlenschmidt, M. S., Dubey, J. P. and Sibley, L. D. (2005). Gliding motility leads to active cellular invasion by Cryptosporidium parvum sporozoites. Infection and Immunity 73, 53795387.
Wheeler, C., Vugia, D. J., Thomas, G., Beach, M. J., Carnes, S., Maier, T., Gorman, J., Xiao, L., Arrowood, M. J., Gilliss, D. and Werner, S. B. (2007). Outbreak of cryptosporidiosis at a California waterpark: employee and patron roles and the long road towards prevention. Epidemiology and Infection 135, 302310.
Widmer, G., Klein, P. and Bonilla, R. (2007). Adaptation of Cryptosporidium oocysts to different excystation conditions. Parasitology 134, 15831588.


Related content

Powered by UNSILO

Cryptosporidium cell culture infectivity assay design

  • B. J. KING (a1), A. R. KEEGAN (a1), B. S. ROBINSON (a1) and P. T. MONIS (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.