Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T01:41:41.096Z Has data issue: false hasContentIssue false

Antigenic variation in cyclically transmitted Trypanosoma brucei. Variable antigen type composition of metacyclic trypanosome populations from the salivary glands of Glossina morsitans

Published online by Cambridge University Press:  06 April 2009

S. L. Hajduk
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ
Cathy R. Cameron
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ
J. D. Barry
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ
K. Vickerman
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ

Summary

Tsetse flies (Glossina morsitans) were fed on the blood of mice containing any one of 5 variable antigen types (VATs) of Trypanosoma brucei AnTAR 1 serodeme. The VATs of the metacyclic trypanosomes subsequently detected in the flies' saliva probes were investigated using monospecific antisera to AnTAR 1 VATs in indirect immunofluorescence and trypanolysis reactions; these sera included 3 raised against AnTats 1.6, 1.30 and 1.45, previously identified as components of the metacyclic population (M-VATs), and against the 5 VATs originally ingested by the flies. The percentage of metacyclics reacting with a particular M-VAT antiserum remained more or less constant (AnTat 1.6, 6·0–8·3%; AnTat 1.30, 13·7–18·2%; AnTat 1.45, 2·0–8·0%), regardless of the age of the fly or the ingested VAT. As these 3 VATs accounted for no more than 30% of the metacyclic population, the existence of at least one more VAT is envisaged. The ingested VAT could not be detected among the AnTAR 1 metacyclic trypanosomes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barry, J. D. (1979). Capping of variable antigen on Trypanosoma brucei, and its immunological and biological significance. Journal of Cell Science 37, 287302.CrossRefGoogle ScholarPubMed
Barry, J. D. & Hajduk, S. L. (1979). Antigenic heterogeneity of bloodstream and metacyclic forms of Trypanosoma brucei. In Pathogenicity of Trypanosomes, (ed. Losos, G. and Chouinard, A), pp. 5156. Ottawa: IDRC.Google Scholar
Barry, J. D., Hajduk, S. L., Vickerman, K. & Le Ray, D. (1979). Detection of multiple variable antigen types in metacyclic populations of Trypanosoma brucei. Transactions of the Royal Society of Tropical Medicine and Hygiene 73, 205–8.Google Scholar
Barry, J. D. & Vickerman, K. (1979). Trypanosoma brucei: Loss of variable antigens during transformation from bloodstream to procyclic forms in vitro. Experimental Parasitology 48, 313–24.CrossRefGoogle ScholarPubMed
Capbern, A., Giroud, C., Baltz, T. & Mattern, P. (1977). Trypanosoma equiperdum: étude des variations antigéniques au cours de la trypanosomose expérimentale du lapin. Experimental Parasitology 42, 613.CrossRefGoogle Scholar
Cunningham, M. P. (1966). The preservation of viable metacyclic forms of Trypanosoma rhodesiense and some studies on the antigenicity of the organisms. Transactions of the Royal Society of Tropical Medicine and Hygiene 60, 126.CrossRefGoogle Scholar
Cross, G. A. M. (1978). Antigenic variation in trypanosomes. Proceedings of the Royal Society of London, B 202, 5572.Google Scholar
Doyle, J. J. (1977). Antigenic variation in the salivarian trypanosomes. In Immunity to Blood Parasites in Animals and Man, (ed. Miller, L., Pino, J. and McKelvey, J.), pp. 2763, New York: Plenum Press.CrossRefGoogle Scholar
Doyle, J. J., Hirumi, H., Hirumi, K., Lupton, E. N. & Cross, G. A. M. (1980). Antigenic variation in clones of animal-infective Trypanosoma brucei derived and maintained in vitro. Parasitology 80, 359–69.CrossRefGoogle ScholarPubMed
Gray, A. R. (1965). Antigenic variation in a strain of Trypanosoma brucei transmitted by Glossina morsitans and G. palpalis. Journal of General Microbiology 41, 195214.CrossRefGoogle Scholar
Gray, A. R. (1975). A pattern in the development of agglutinogenic antigens of cyclically transmitted isolates of Trypanosoma gambiense. Transactions of the Royal Society of Tropical Medicine and Hygiene 69, 131–8.Google Scholar
Gray, A. R. & Luckins, A. G. (1976). Antigenic variation in salivarian trypanosomes. In Biology of the Kinetoplastida, vol. 1, (ed. Lumsden, W. H. R. and Evans, D. A.), pp. 493542. London, New York and San Francisco: Academic Press.Google Scholar
Hudson, K. M., Taylor, A. E. R. & Elce, B. J. (1980). Antigenic changes in Trypanosoma brucei on transmission by tsetse fly. Parasite Immunology 2, 5769.Google Scholar
Jenni, L. (1977). Comparisons of antigenic types of Trypanosoma (T.) brucei strains transmitted by Glossina m. morsitans. Acta Tropica 34, 3541.Google ScholarPubMed
Jenni, L. (1979). Cyclical transmission and antigenic variation. In Pathogenicity of Trypanosomes (ed. Losos, G. and Chouinard, A.), pp. 4950, Ottawa: IDRC.Google Scholar
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–32.CrossRefGoogle ScholarPubMed
Le Ray, D., Barry, J. D., Easton, C. & Vickerman, K. (1977). First tsetse fly transmission of the ‘AnTat’ serodeme of Trypanosoma brucei. Annales de la Societé belge de Médecine tropicale 57, 369–81.Google ScholarPubMed
Le Ray, D., Barry, J. D. & Vickerman, K. (1978). Antigenic heterogeneity of metacyclic forms of Trypanosoma brucei, Nature, London 273, 300–2.CrossRefGoogle ScholarPubMed
Lumsden, W. H. R., Herbert, W. J. & McNeillage, G. J. C. (1973). Techniques with Trypanosomes. Edinburgh: Churchill Livingstone.Google Scholar
McNeillage, G. J. C., Herbert, W. H. & Lumsden, W. H. R. (1969). Antigenic type of first relapse variants arising from a strain of Trypanosoma (Trypanozoon) brucei. Experimental Parasitology 25, 17.CrossRefGoogle ScholarPubMed
Nantulya, V. M. & Doyle, J. J. (1977). Stabilization and preservation of the antigenic specificity of Trypanosoma (Trypanozoon) brucei variant-specific surface antigens by mild fixation techniques. Acta Tropica 34, 313–20.Google ScholarPubMed
Steiger, R. F. (1973). On the ultrastructure of Trypanosoma (Trypanozoon) brucei in the course of its life cycle and some related aspects, Acta Tropica 30, 64168.Google Scholar
Turner, M. J. (1980). Antigenic variation. In The Molecular Basis of Microbial Pathogenicity (ed. Smith, H., Skehel, J. J. and Turner, M. J.), pp. 133158. Weinheim: Verlag Chemie.Google Scholar
Van der Meer, C., Versluys-Broers, J. A. M. & Opperdoes, F. R. (1979). Trypanosoma brucei: trypanocidal effect of salicylhydroxamic acid plus glycerol in infected rats. Experimental Parasitology 48, 126–34.CrossRefGoogle ScholarPubMed
Vickerman, K. (1969). On the surface coat and flagellar adhesion in trypanosomes. Journal of Cell Science 5, 163–93.Google Scholar
Vickerman, K. (1971). Morphological and physiological considerations of extracellular blood protozoans. In Ecology and Physiology of Parasites (ed. Fallis, A. M.), pp. 5889. Toronto: University of Toronto Press.CrossRefGoogle Scholar
Vickerman, K. (1978). Antigenic variation in trypanosomes. Nature, London 273, 613–17.CrossRefGoogle ScholarPubMed
Vickerman, K., Barry, J. D., Hajduk, S. L. & Tetley, L. (1980). Antigenic variation in trypanosomes. In Biochemistry of Parasites and Host–Parasite Relationships: The Host–Invader Interplay (ed. Van den Bossche, H.), pp. 179190. Amsterdam: Elsevier, North Holland.Google Scholar
World Health Organization (1978). Proposals for the nomenclature of salivarian trypanosomes and for the maintenance of reference collections. Bulletin of the World Health Organization 56, 467–80.Google Scholar