Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T18:34:16.294Z Has data issue: false hasContentIssue false

Antigenic variation during Trypanosoma vivax infections of different host species

Published online by Cambridge University Press:  06 April 2009

J. D. Barry
Affiliation:
International Laboratory for Research on Animal Diseases, P.O. Box 30709, Nairobi, Kenya

Summary

The sequence of appearance of specific lytic activity against more than 20 variable antigen types (VATs) of Trypanosoma vivax in the serum of 27 animals belonging to 5 species has been examined. For each host species there was a characteristic course of infection, with differences in height and duration of parasitaemia and in pathogenicity. The sequence of antigenic variation was similar in all host species, with some VATs consistently eliciting response more rapidly than others. The predominant group, comprising VATs which apparently developed within the first 3 weeks, varied in size according to the total number of trypanosomes in the bloodstream within that period, suggesting there is a spectrum, rather than discrete groupings, in the hierarchy of VAT expression. There was very little evidence for differences in appearance of VATs between host species; the only clear example was one VAT which apparently did not develop in one host species. The sequence of antigenic variation in T. vivax seems to be determined by the parasite rather than the host species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barry, J. D. & Gathuo, H. (1984). Antigenic variation in Trypanosoma vivax: isolation of a serodeme. Parasitology 89, 4958.CrossRefGoogle ScholarPubMed
Capbern, A., Giroud, C., Baltz, T. & Mattern, P. (1977). Trypanosoma equiperdum: Étude des variations antigéniques au cours de la trypanosomose experimentale du lapin. Experimental Parasitology 42, 613.CrossRefGoogle Scholar
De Gee, A. L. W., Shah, S. D. & Doyle, J. J. (1979). Trypanosoma vivax: sequence of antigenic variants in mice and goats. Experimental Parasitology 48, 352–8.CrossRefGoogle ScholarPubMed
De Gee, A. L. W., Shah, S. D. & Doyle, J. J. (1980). Trypanosoma vivax: host influence on appearance of variable antigen types. Experimental Parasitology 51, 392–9.CrossRefGoogle Scholar
Desowitz, R. S. & Watson, H. J. C. (1951). Studies on Trypanosoma vivax. I. Susceptibility of white rats to infection. Annals of Tropical Medicine and Parasitology 45, 207–19.CrossRefGoogle ScholarPubMed
Desowitz, R. S. & Watson, H. J. C. (1952). Studies on Trypanosoma vivax. III. Observations on maintenance of a strain in white rats. Annals of Tropical Medicine and Parasitology 46, 92100.CrossRefGoogle ScholarPubMed
Doyle, J. J. (1977). Antigenic variation in the hemaprotozoa – with special reference to salivarian trypanosomes. In Immunity to Blood Parasites of Animals and Man (ed. Pino, J., Miller, L. and McKelvey, J.), pp. 3163. New York: Plenum Press.CrossRefGoogle Scholar
Emery, D. L., Barry, J. D. & Moloo, S. K. (1980). The appearance of Trypanosoma (Duttonella) vivax in lymph following challenge of goats with infected Glossina morsitans morsitans. Acta tropica 37, 375–9.Google ScholarPubMed
Gray, A. R. (1965). Antigenic variation in a strain of Trypanosoma brucei transmitted by Glossina morsitans and G. palpalis. Journal of General Microbiology 41, 195214.CrossRefGoogle Scholar
Herbert, W. J. & Lumsden, W. H. R. (1976). Trypanosoma brucei: a rapid ‘matching’ method for estimating the host's parasitaemia. Experimental Parasitology 40, 427–31.CrossRefGoogle Scholar
Kosinski, R. J. (1980). Antigenic variation in trypanosomes: a computer analysis of variant order. Parasitology 80, 343–57.CrossRefGoogle ScholarPubMed
Laurent, M., Pays, E., Magnus, E., Van Meirvenne, N., Matthyssens, G., Williams, R. O. & Steinert, M. (1983). DNA rearrangements linked to expression of a predominant surface antigen gene of trypanosomes. Nature, London 302, 263–6.CrossRefGoogle ScholarPubMed
Laurent, M., Pays, E., Van Der Werf, A., Aerts, D., Magnus, E., Van Meirvenne, N. & Steinert, M. (1984). Translocation alters the activation rate of a trypanosome surface antigen gene. Nucleic Acids Research 12, 8319–28.CrossRefGoogle ScholarPubMed
Le Ray, D., Barry, J. D., Easton, C. & Vickerman, K. (1977). First tsetse fly transmission of the ‘AnTat’ serodeme of Trypanosoma brucei. Annales de la Société belge de Médecine tropicale 57, 369–81.Google ScholarPubMed
Liu, A. Y. C., Michels, P. A. M., Bernards, A. & Borst, P. (1985). Trypanosome variant surface glycoprotein genes expressed early in infection. Journal of Molecular Biology 182, 383–96.CrossRefGoogle ScholarPubMed
Losos, G. J. & Ikede, B. O. (1972). Review of pathology of diseases in domestic and laboratory animals caused by Trypanosoma congolense, T. vivax, T. brucei, T. rhodesiense and T. gambiense. Veterinary Pathology 9, Suppl. 171.CrossRefGoogle Scholar
McNeillage, G. J. C. & Herbert, W. J. (1968). Infectivity and virulence of Trypanosoma (Trypanozoon) brucei for mice. II. Comparision of closely related antigenic types. Journal of Comparative Pathology 78, 345–9.CrossRefGoogle Scholar
Miller, E. N. & Turner, M. J. (1981). Analysis of antigenic types appearing in first relapse populations of clones of Trypanosoma brucei. Parasitology 82, 6380.CrossRefGoogle ScholarPubMed
Moloo, S. K. (1981). Studies on the transmission of a West African stock of Trypanosoma vivax to rabbits, rats, mice and goats by Glossina morsitans morsitans and G. m. centralis. International Journal for Parasitology 11, 191–6.CrossRefGoogle Scholar
Nantulya, V. M., Musoke, A. J., Barbet, A. F. & Roelants, G. E. (1979). Evidence for reappearance of Trypanosoma brucei variable antigen types in relapse populations. Journal of Parasitology 65, 673–9.CrossRefGoogle ScholarPubMed
Nantulya, V. M., Musoke, A. J., Rurangirwa, F. R. & Moloo, S. K. (1984). Resistance of cattle to tsetse-transmitted challenge with Trypanosoma brucei and Trypanosoma congolense after spontaneous recovery from syringe-passaged infections. Infection and Immunity 43, 735–8.CrossRefGoogle ScholarPubMed
Seed, J. R. (1978). Competition among serologically different clones of Trypanosoma brucei gambiense in vivo. Journal of Protozoology 25, 526–9.CrossRefGoogle ScholarPubMed
Seed, J. R. (1984). The ecology of antigenic variation. Journal of Protozoology 31, 4853.CrossRefGoogle ScholarPubMed
Sendashonga, C. & Black, S. J. (1982). Humoral responses against Trypanosoma brucei variable surface antigen are induced by degenerating parasites. Parasite Immunology 4, 245–57.CrossRefGoogle ScholarPubMed
Turner, M. J. (1984). Antigenic variation in its biological context. Philosophical Transactions of the Royal Society of London B307, 2740.Google ScholarPubMed
Van Der Ploeg, L. H. T. & Cornelissen, A. W. C. A. (1984). The contribution of chromosomal translocations to antigenic variation in Trypanosoma brucei. Philosophical Transactions of the Royal Society B307, 1326.Google ScholarPubMed
Van Der Ploeg, L. H. T., Valerio, D., De Lange, T., Bernards, A., Borst, P. & Grosveld, F. G. (1982). An analysis of cosmid clones of nuclear DNA from Trypanosoma brucei shows that the genes for VSGs are clustered in the genome. Nucleic Acids Research 10, 5905–23.CrossRefGoogle ScholarPubMed
Van Meirvenne, N., Janssens, P. G. & Magnus, E. (1975). Antigenic variation in syringe-passaged populations of Trypanosoma (Trypanozoon) brucei. I. Rationalization of the experimental approach. Annales de la Société belge de Médecine Tropicale 55, 123.Google ScholarPubMed
Vickerman, K. & Barry, J. D. (1982). African trypanosomiasis. In Immunology of Parasitic Infections, 2nd edn. (ed. Cohen, S. and Warren, K.), pp. 204–60. Oxford: Blackwell Scientific Publications.Google Scholar