Skip to main content Accessibility help
×
Home

Article contents

Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus

Published online by Cambridge University Press:  24 August 2016


ANA PAULA DE SOUZA STORI DE LARA
Affiliation:
Departamento de Microbiologia e Parasitologia, UFPel, Pelotas, RS, Brazil
LUCAS BIGOLIN LORENZON
Affiliation:
Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
ANA MUÑOZ VIANNA
Affiliation:
Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas (UFPel) Pelotas, RS, Brazil
FRANCISCO DENIS SOUZA SANTOS
Affiliation:
Faculdade de Veterinária, Universidade Federal de Pelotas (UFPel) Pelotas, RS, Brazil
LUCIANO SILVA PINTO
Affiliation:
Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas (UFPel) Pelotas, RS, Brazil
MARIA ELISABETH AIRES BERNE
Affiliation:
Departamento de Microbiologia e Parasitologia, UFPel, Pelotas, RS, Brazil
FÁBIO PEREIRA LEIVAS LEITE
Affiliation:
Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas (UFPel) Pelotas, RS, Brazil
Corresponding

Summary

Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g−1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P < 0·001) were, respectively observed, compared with the control group. A 30 mL bacterial suspension (1 × 108 CFU mL−1) of B. thuringiensis var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P < 0·001) of 79 and 90% were observed respectively compared with the control group. The results suggest that the Cry11Aa toxin of B. thuringiensis var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.


Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Barger, I. A. (1999). The role of epidemiological Knowledge and grazing management for helminth control in small ruminants. International Journal for Parasitology 29, 4150.CrossRefGoogle ScholarPubMed
Betz, F. S., Hammond, B. G. and Fuchs, R. L. (2000). Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology 32, 156173.CrossRefGoogle ScholarPubMed
Bone, L. W., Bottjer, K. P. and Gill, S. S. (1988). Factores affecting the larvicidal activity of Bacillus thuringiensis israelensis toxin for Tricostrongylus colubriformis (Nematoda). Journal of Invertebrate Pathology 52, 102107.CrossRefGoogle Scholar
Bravo, A., Gill, S. S. and Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423435.CrossRefGoogle ScholarPubMed
Bravo, A., Likitvivatanavong, S., Gill, S. S. and Soberón, M. (2011). Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology 41, 423431.CrossRefGoogle ScholarPubMed
Capello, M., Bungiro, R. D., Harrison, L. M., Bischof, L. J., Griffitts, J. S., Barrows, B. D. and Aroian, R. V. (2006). A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum . Proceedings of the National Academy of Sciences of the United States of America 103, 1515415159.CrossRefGoogle Scholar
Cezar, A. S., Toscan, G., Camillo, G., Sangioni, L. A., Ribas, H. O. and Vogel, F. S. F. (2010). Multiple resistance of gastrointestinal nematodes to nine different drugs in a sheep flock in southern Brazil. Veterinary Parasitology 173, 157160.CrossRefGoogle Scholar
Chandrawathani, P., Jamnah, O., Waller, P. J., Höglund, J., Larsen, M. and Zahari, W. M. (2002). Nematophagous fungi as a biological control agent for nematode parasites of small ruminants in Malaysia: a special emphasis on Duddingtonia flagrans . Veterinary Research 33, 685696.CrossRefGoogle ScholarPubMed
Coles, G. C., Bauer, C., Borgsteede, F. H., Geerts, S., Klei, T. R., Taylor, M. A. and Waller, P. J. (1992). World Association for Advancement of Veterinary Parasitology (WAAVP) Methods for detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 44, 3543.CrossRefGoogle Scholar
de Maadg, R. A., Bravo, A., Berry, C., Crick more, N. and Schnepf, H. E. (2003). Structure, diversity, and evolution of protein toxins from spore-forming entopathogenic bacteria. Annual Review of Genetics 37, 409433.CrossRefGoogle Scholar
Gasser, R. B., Bott, N. J., Chilton, N. B., Hunt, P. and Beveridge, I. (2008). Toward practical, DNA-based diagnostic methods for parasitic nematodes of livestock-bionomic and biotechnological implications. Biotechnology Advances 26, 325334.CrossRefGoogle ScholarPubMed
Geary, T. G., Woo, K., McCarthy, J. S., Mackenzie, C. D., Horton, J., Prichard, R. K., de Silva, N. R., Olliaro, P. L., Lazdins-Helds, J. K., Engels, D. A. and Bundy, D. A. (2010). Unresolved issues in anthelmintic pharmacology for helminthiases of humans. International Journal for Parasitology 40, 113.CrossRefGoogle ScholarPubMed
Gordon, H. M. and Whitlock, H. V. (1939). A new technique for counting nematode eggs in sheep faeces. Journal of the Council Scientific and Industrial Research 12, 5052.Google Scholar
Hasshoff, M., Böhnisch, C., Tonn, D., Hasert, B. and Schulenburg, H. (2007). The role of Caenorhabditis elegans insulin-like signaling in the behavioral avoidance of pathogenic Bacillus thuringiensis . The Official Journal of the Federation of American Societies for Experimental Biology 21, 18011812.CrossRefGoogle ScholarPubMed
Höss, S., Menzel, R., Gessler, F., Nguyen, H. T., Jehle, J. A. and Traunspurger, W. (2013). Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans . Environmental Pollution 178, 147–15.CrossRefGoogle ScholarPubMed
Kaplan, R. M. (2004). Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology 20, 477481.CrossRefGoogle ScholarPubMed
Kotze, A. C., O`Grady, J., Gough, J. M., Pearson, R., Bagnall, N. H., Kemp, D. H. and Akhurst, R. J. (2005). Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. International Journal for Parasitology 35, 10131022.CrossRefGoogle ScholarPubMed
Lee, D. H., Machi, J. and Ohba, M. (2002). High frequency of Bacillus thuringiensis in feces of herbivorous animals maintained in a zoological garden in Japan. Applied Entomology and Zoology 37, 509516.CrossRefGoogle Scholar
Marroquin, L. D., Elyassnia, D., Griffits, J. S., Feiltelson, J. S. and Aroian, R. V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans . Genetics 155, 16931699.Google ScholarPubMed
Medeiros, A. E., Ramos, Z. and Banchero, G. E. (2014). First report of monepantel Haemonchus contortus resistance on sheep farms in Uruguay. Parasites & Vectors 7, 598.CrossRefGoogle Scholar
O'Connor, L. J., Walkden-Brown, S. W. and Kahn, L. P. (2006). Ecology of the free-living stages of major trichostrongylid parasites of sheep. Veterinary Parasitology 142, 115.CrossRefGoogle ScholarPubMed
Pardo-López, L., Soberón, M. and Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews 37, 322.CrossRefGoogle ScholarPubMed
Roberts, F. H. S. and O'Sullivan, P. J. (1950). Methods for counts and larval cultures for Strongyles infesting the gastrointestinal tract of cattle. Australian Journal of Agricultural Research 1, 99102.CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning – A Laboratory Manual, 2nd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998). Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiology and Molecular Biology Reviews 62, 775806.Google ScholarPubMed
Schulenburg, H. and Ewbank, J. J. (2007). The genetics of pathogen avoidance in Caenorhabditis elegans . Molecular Microbiology 66, 563570.CrossRefGoogle ScholarPubMed
Siegel, J. P. (2001). The mammalian safety of Bacillus thuringiensis – based insecticides. Journal of Invertebrate Pathology 77, 1321.CrossRefGoogle ScholarPubMed
Silva, M. E., Braga, F. R., de Gives, P. M., Millán-Orozco, J., Uriostegui, M. A., Marcelino, L. A., Soares, F. E., Araújo, A. L., Vargas, T. S., Aguiar, A. R., Senna, T., Rodrigues, M. G., Froes, F. V. and de Araújo, J. V. (2015). Fungal antagonism assessment of predatory species and producers metabolites and their effectiveness on Haemonchus contortus infective larvae. BioMed Research International 2015, 241582.CrossRefGoogle ScholarPubMed
Sinott, M. C., Cunha Filho, N. A., Castro, L. L. D., Lorenzon, L. B., Pinto, N. B., Capella, G. A. and Leite, F. P. L. (2012). Bacillus spp. toxicity against Haemonchus contortus larvae in sheep fecal cultures. Experimental Parasitology 132, 103108.CrossRefGoogle ScholarPubMed
Sinott, M. C., Dias de Castro, L. L., Leite, F. L. L., Gallina, T., De-Souza, M. T., Santos, D. F. L. and Leite, F. P. L. (2014). Larvicidal activity of Bacillus circulans against the gastrointestinal nematode Haemonchus contortus in sheep. Journal of Helminthology 90, 6873.CrossRefGoogle Scholar
Soberón, M. and Bravo, A. (2007). Las toxinas Cry de Bacillus thuringiensis: modo de acción y consecuencias de su aplicación. Biotecnologia 14, 303313.Google Scholar
Soberón, M., López-Díaz, J. A. and Bravo, A. (2013). Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganism. Peptides 41, 8793.CrossRefGoogle Scholar
Ueno, H., Gonçalves, P. C. (1998). Manual para Diagnóstico das Helmintoses de Ruminantes, 4th Edn. Japan international Cooperation Agency, Tokyo, Japan.Google Scholar
Van den Brom, R., Moll, L., Kappert, C. and Vellema, P. (2015). Haemonchus contortus resistance to monepantel in sheep. Veterinary Parasitology 209, 278280.CrossRefGoogle Scholar
Van Wyk, J. A., Stenson, M. O., Van der Merwe, J. S., Vorster, R. J. and Viljoen, P. G. (1999). Anthelmintic resistance in South Africa: surveys indicate an extremely serious situation in sheep and goat farming. Onderstepoort Journal Veterinary Research 66, 273284.Google ScholarPubMed
Wei, J. Z., Hale, K., Carla, L., Platzer, E., Wong, C., Fang, S. C. and Aroian, R. V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the United States of America 100, 27602765.CrossRefGoogle ScholarPubMed
Yousten, A. A. (1984). Bacillus sphaericus: microbiological factors related to its potential as a mosquito larvicide. Advances in Biotechnology Processes 3, 315343.Google ScholarPubMed
Zhang, Y., Lu, H. and Bargmann, C. L. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans . Nature 438, 179184.CrossRefGoogle ScholarPubMed

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 24
Total number of PDF views: 156 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-w2ssg Total loading time: 0.327 Render date: 2020-12-03T05:51:41.043Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 05:07:40 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *