Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-xlldj Total loading time: 0.38 Render date: 2021-04-20T22:44:04.518Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Invasive species threat: parasite phylogenetics reveals patterns and processes of host-switching between non-native and native captive freshwater turtles

Published online by Cambridge University Press:  18 July 2011

O. VERNEAU
Affiliation:
UMR 5244 CNRS-UPVD, Biologie et Ecologie Tropicale et Méditerranéenne, Parasitologie Fonctionnelle et Evolutive, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
C. PALACIOS
Affiliation:
UMR 5244 CNRS-UPVD, Biologie et Ecologie Tropicale et Méditerranéenne, Parasitologie Fonctionnelle et Evolutive, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
T. PLATT
Affiliation:
Department of Biology, Saint Mary's College, Notre Dame, IN 46556, USA
M. ALDAY
Affiliation:
UMR 5244 CNRS-UPVD, Biologie et Ecologie Tropicale et Méditerranéenne, Parasitologie Fonctionnelle et Evolutive, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
E. BILLARD
Affiliation:
UMR 5244 CNRS-UPVD, Biologie et Ecologie Tropicale et Méditerranéenne, Parasitologie Fonctionnelle et Evolutive, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
J.-F. ALLIENNE
Affiliation:
UMR 5244 CNRS-UPVD, Biologie et Ecologie Tropicale et Méditerranéenne, Parasitologie Fonctionnelle et Evolutive, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
C. BASSO
Affiliation:
Unidad de Entomología, Facultad de Agronomía, Universidad de la República, Av. Garzón 780, 12900 Montevideo, Uruguay
L. H. DU PREEZ
Affiliation:
School of Environmental Sciences and Development, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
Corresponding
E-mail address:

Summary

One of the major threats to biodiversity involves biological invasions with direct consequences on the stability of ecosystems. In this context, the role of parasites is not negligible as it may enhance the success of invaders. The red-eared slider, Trachemys scripta elegans, has been globally considered among the worst invasive species. Since its introduction through the pet trade, T. s. elegans is now widespread and represents a threat for indigenous species. Because T. s. elegans coexists with Emys orbicularis and Mauremys leprosa in Europe, it has been suggested it may compete with the native turtle species and transmit pathogens. We examined parasite transfer from American captive to the two native species that co-exist in artificial pools of a Turtle Farm in France. As model parasite species we used platyhelminth worms of the family Polystomatidae (Monogenea) because polystomes have been described from American turtles in their native range. Phylogenetic relationships among polystomes parasitizing chelonian host species that are geographically widespread show patterns of diversification more complex than expected. Using DNA barcoding to identify species from adult and/or polystome eggs, several cases of host switching from exotic to indigenous individuals were illustrated, corroborating that parasite transmission is important when considering the pet trade and in reintroduction programmes to reinforce wild populations of indigenous species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

Alarcos Izquierdo, G., Flechoso del Cuerto, F., Rodríguez-Pereira, A. and Lizana Avia, M. (2010). Distribution records of non-native terrapins in Castilla and León region (Central Spain). Aquatic Invasions 5, 303308. doi:10.3391/ai.2010.5.3.08CrossRefGoogle Scholar
Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R. and Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution 19, 535544. doi:10.1016/j.tree.2004.07.021CrossRefGoogle ScholarPubMed
Arvy, C. and Servan, J. (1998). Imminent competition between Trachemys scripta and Emys orbicularis in France. Mertensiella 10, 3340.Google Scholar
Bertolero, A. (1999). Suivi de la population de cistude Emys orbicularis dans le delta de l'Ebre (Ne Espagne). Chelonii 2, 6368.Google Scholar
Bertolero, A. and Oro, D. (2009). Conservation diagnosis of reintroducing Mediterranean pond turtles: what is wrong? Animal Conservation 12, 581591. doi:10.1111/j.1469-1795.2009.00284.xCrossRefGoogle Scholar
Bonin, F., Devaux, B. and Dupré, A. (1998). Toutes les Tortues du Monde. Delachaux et Niestlé, Lausanne. ISBN-13: 978-2603010242Google Scholar
Cadi, A., Delmas, V., Prévot-Julliard, A.-C., Joly, P., Pieau, C. and Girondot, M. (2004). Successful reproduction of the introduced slider turtle (Trachemys scripta elegans) in the South of France. Aquatic Conservation: Marine and Freshwater Ecosystems 14, 237246. doi:10.1002/aqc.607CrossRefGoogle Scholar
Cadi, A. and Joly, P. (2003). Competition for basking places between the endangered European pond turtle (Emys orbicularis galloitalica) and the introduced red-eared slider (Trachemys scripta elegans). Canadian Journal of Zoology 81, 13921398. doi:10.1139/z03-108CrossRefGoogle Scholar
Cadi, A. and Joly, P. (2004). Impact of the introduction of the read-eared slider (Trachemys scripta elegans) on survival rates of the European pond turtle (Emys orbicularis). Biodiversity and Conservation 13, 25112518. doi:10.1023/B:BIOC.0000048451.07820.9cCrossRefGoogle Scholar
Cadi, A. and Miquet, A. (2004). A reintroduction programme for the European pond turtle (Emys orbicularis) in Lake Bourget (Savoie, France): first results after two years. Biologia 59, 155159.Google Scholar
Chen, T.-H. (2006). Distribution and status of the introduced red-eared slider (Trachemys scripta elegans) in Taiwan. In Assessment and Control of Biological Invasion Risks (eds. Koike, F., Clout, M. N., Kawamichi, M., De Poorter, M. and Iwatsuki, K.), pp. 187195. Shoukadoh Book sellers, Kyoto, Japan and IUCN, Gland, Switzerland. ISBN-13: 978-4879746047Google Scholar
Clay, K. (2003). Parasites lost. Nature 421, 585586. doi:10.1038/421585aCrossRefGoogle ScholarPubMed
Combes, C. and Ktari, M. H. (1976). Neopolystoma euzeti n. sp. (Monogenea, Polystomatidae) premier représentant du genre Neopolystoma Price, 1939 en Afrique. Annales de Parasitologie Humaine et Comparée 51, 221225.CrossRefGoogle Scholar
Combes, C. and Thiery, A. (1983). Sur un Polystomoides (Monogenea), parasite du chélonien Clemys caspica au Maroc. Bulletin de l'Institut Scientifique (Rabat) 7, 165170.Google Scholar
Da Silva, E. and Blasco, M. (1995). Trachemys scripta elegans in Southwestern Spain. Herpetological Review 26, 133134.Google Scholar
Daszak, P., Berger, L., Cunningham, A. A., Hyatt, A. D., Green, D. E. and Speare, R. (1999). Emerging infectious diseases and amphibian population declines. Emerging Infectious Diseases 5, 735748.CrossRefGoogle ScholarPubMed
Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2000). Emerging infectious diseases of wildlife – Threats to biodiversity and human health. Science 287, 443449. doi:10.1126/science.287.5452.443CrossRefGoogle ScholarPubMed
Du Preez, L. H. and Lim, L. H. S. (2000). Neopolystoma liewi sp. n. (Monogenea: Polystomatidae) from the eye of the Malayan box turtle (Cuora amboinensis). Folia Parasitologica 47, 1116.CrossRefGoogle Scholar
Du Preez, L. H., Raharivololoniaina, L., Verneau, O. and Vences, M. (2010). A new genus of polystomatid parasitic flatworm (Monogenea: Polystomatidae) without free-swimming life stage from the Malagasy poison frogs. Zootaxa 2722, 5468.Google Scholar
Du Preez, L. H., Verneau, O. and Gross, D. (2007). Polystoma floridana n. sp. (Monogenea: Polystomatidae) a parasite in the green tree frog, Hyla cinerea (Schneider), of North America. Zootaxa 1663, 3345.Google Scholar
Eiras, J. C. (2005). An overview on the myxosporean parasites in amphibians and reptiles. Acta Parasitologica 50, 267275.Google Scholar
Ellstrand, N. C. and Schierenbeck, K. A. (2000). Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences, USA 97, 70437050. doi:10.1007/s10681-006-5939-3CrossRefGoogle ScholarPubMed
Ficetola, G. F., Monti, A. and Padoa-Schioppa, E. (2002). First record of reproduction of Trachemys scripta in the Po Delta. Annali del Museo Civico di Storia Naturale di Ferra 5, 125128.Google Scholar
Ficetola, G. F., Thuiller, W. and Padoa-Schioppa, E. (2009). From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Diversity and Distributions 15, 108116. doi:10.1111/j.1472-4642.2008.00516.xCrossRefGoogle Scholar
Frye, F. L., Oshiro, L. S., Dutra, F. R. and Carney, J. D. (1977). Herpesvirus-like infection in two pacific pond turtles. Journal of the American Veterinary Medical Association 17, 882884.Google Scholar
Gonzales, J. P. and Mishra, G. S. (1977). Polystomoides tunisiensis n. sp. (Monogenea, Polystomatidae) et Telorchis temimi n. sp. (Digenea, Telorchiidae). Deux nouvelles espèces de Trématodes de tortues paludines de Tunisie. Archives de l'Institut Pasteur de Tunis 54, 2938.Google Scholar
Guindon, S. and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704. doi:10.1080/10635150390235520CrossRefGoogle ScholarPubMed
Harper, P. A. W., Hammond, D. C. and Heuschele, W. P. (1982). A herpesvirus-like agent associated with a pharyngeal abscess in a desert tortoise. Journal of Wildlife Diseases 18, 491494.CrossRefGoogle Scholar
Harwood, P. D. (1932). The helminths parasitic in the Amphibia and Reptilia of Houston, Texas and vicinity. Proceedings of the United States National Museum 81, 171.CrossRefGoogle Scholar
Hays, D. W., McAllister, K. R., Richardson, S. A. and Stinson, D. W. (1999). Washington State Recovery Plan for the Western Pond Turtle. Washington Department of Fish and Wildlife, Olympia, Washington.Google Scholar
Hidalgo-Vila, J., Díaz-Paniagua, C., de Frutos-Escobar, C., Jiménez-Martínez, C. and Pérez-Santigosa, N. (2007). Salmonella in free living terrestrial and aquatic turtles. Veterinary Microbiology 119, 311315. doi:10.1016/j.rvsc.2008.01.011CrossRefGoogle ScholarPubMed
Hidalgo-Vila, J., Díaz-Paniagua, C., Pérez-Santigosa, N., de Frutos-Escobar, C. and Herrero-Herrero, A. (2008). Salmonella in free living exotic and native turtles in pet exotic turtles from SW Spain. Research in Veterinary Science 85, 449452. doi:10.1016/j.rvsc.2008.01.011CrossRefGoogle ScholarPubMed
Hidalgo-Vila, J., Díaz-Paniagua, C., Ribas, A., Florencio, M., Pérez-Santigosa, N. and Casanova, J. C. (2009). Helminth communities of the exotic introduced turtle, Trachemys scripta elegans in southwestern Spain: transmission from native turtles. Research in Veterinary Science 86, 463465. doi:10.1016/j.rvsc.2008.08.003CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P. and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755. doi:10.1093/bioinformatics/17.8.754CrossRefGoogle ScholarPubMed
Huxel, G. R. (1999). Rapid displacement of native species by invasive species: effects of hybridization. Biological Conservation 89, 143152. doi:10.1016/S0006-3207(98)00153-0CrossRefGoogle Scholar
Keane, R. M. and Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution 17, 164170. doi:10.1016/S0169-5347(02)02499-0CrossRefGoogle Scholar
Kikillus, K. H., Hare, K. M. and Hartley, S. (2009). Minimizing false-negatives when predicting the potential distribution of an invasive species: a bioclimatic envelope for the red-eared slider at global and regional scales. Animal Conservation 13, 515. doi:10.1111/j.1469-1795.2008.00299.xCrossRefGoogle Scholar
Knoepffler, L.-P. and Combes, C. (1977). Présence en Corse de Polystomoides ocellatum (Rudolphi, 1819) chez Emys orbicularis (L., 1758) (Chelonia, Emydidae). Considérations sur la répartition mondiale du genre Polystomoides. Vie Milieu, Série C 27, 221230.Google Scholar
Littlewood, D. T. J., Rohde, K. and Clough, K. A. (1997). Parasite speciation within or between host species? Phylogenetic evidence from site-specific polystome monogeneans. International Journal for Parasitology 27, 12891297. doi:10.1016/S0020-7519(97)00086-6CrossRefGoogle ScholarPubMed
MacCallum, G. A. (1918). Studies on the Polystomatidae. Zoopathologica 1, 103120.Google Scholar
Mihalca, A. D., Gherman, C., Ghira, I. and Cozma, V. (2007). Helminth parasites of reptiles (Reptilia) in Romania. Parasitology Research 101, 491492. doi:10.1007/s00436-007-0486-yCrossRefGoogle Scholar
Mihalca, A. D., Racka, K., Gherman, C. and Lonescu, D. T. (2008). Prevalence and intensity of blood apicomplexan infections in reptiles from Romania. Parasitology Research 102, 10811083. doi:10.1007/s00436-008-0912-9CrossRefGoogle ScholarPubMed
Miquet, A. and Cadi, A. (2002). Réintroduction de la cistude d'Europe en Savoie. Premier bilan (2000/2001). Bulletin de la Société Herpétologique de France 104, 5461.Google Scholar
Mishra, G. S. and Gonzalez, J. P. (1978). Les parasites des tortues d'eau douce en Tunisie. Les archives de l'Institut Pasteur de Tunis 55, 303326.Google Scholar
Mitchell, C. E. and Power, A. G. (2003). Release of invasive plants from fungal and viral pathogens. Nature 421, 625627. doi:10.1038/nature01317CrossRefGoogle ScholarPubMed
Mooney, H. A. and Cleland, E. E. (2001). The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences, USA 98 (Suppl.) S446S451. doi:10.1073/pnas.091093398CrossRefGoogle ScholarPubMed
Mosimann, D. and Cadi, A. (2004). On the occurrence and viability of the European pond turtle (Emys orbicularis) in Moulin-de-Vert (Geneva, Switzerland): 50 years after first introduction. Biologia 59, 109112.Google Scholar
Pasmans, F., De Herdt, P., Dewulf, J. and Haesebrouck, F. (2002). Pathogenesis of infections with Salmonella enterica subsp. enterica serovar Muenchen in the turtle Trachemys scripta scripta. Veterinary Microbiology 87, 315325. doi:10.1016/S0378-1135(02)00081-0CrossRefGoogle ScholarPubMed
Perez-Santigosa, N., Diaz-Paniagua, C. and Hidalgo-Vila, J. (2008). The reproductive ecology of exotic Trachemys scripta elegans in an invaded area of southern Europe. Aquatic Conservation Marine and Freshwater Ecosystems 18, 13021310. doi:10.1002/aqc.974CrossRefGoogle Scholar
Platt, T. R. (2000). Helminth parasites of the western painted turtle, Chrysemys picta belli (Gray), including Neopolystoma elizabethae n. sp. (Monogenea: Polystomatidae), a parasite of the conjunctival sac. Journal of Parasitology 86, 815818. doi:10.1645/0022-3395(2000)086[0815:HPOTWP]2.0.CO;2CrossRefGoogle Scholar
Polo-Cavia, N., López, P. and Martín, J. (2008). Interspecific differences in responses to predation risk may confer competitive advantages to invasive freshwater turtle species. Ethology 114, 115123. doi:10.1111/j.1439-0310.2007.01441.xCrossRefGoogle Scholar
Polo-Cavia, N., López, P. and Martín, J. (2009 a). Interspecific differences in chemosensory responses of freshwater turtles: consequences for competition between native and invasive species. Biological Invasions 11, 431440. doi:10.1007/s10530-008-9260-zCrossRefGoogle Scholar
Polo-Cavia, N., López, P. and Martín, J. (2009 b). Interspecific differences in heat exchange rates may affect competition between introduced and native freshwater turtles. Biological Invasions 11, 17551765. doi:10.1007/s10530-008-9355-6CrossRefGoogle Scholar
Polo-Cavia, N., Gonzalo, A., López, P. and Martín, J. (2010 a). Predator recognition of native but not invasive turtle predators by naïve anuran tadpoles. Animal Behaviour 80, 461466. doi:10.1016/j.anbehav.2010.06.004CrossRefGoogle Scholar
Polo-Cavia, N., López, P. and Martín, J. (2010 b). Competitive interactions during basking between native and invasive freshwater turtle species. Biological Invasions 12, 21412152. doi:10.1007/s10530-009-9615-0CrossRefGoogle Scholar
Polo-Cavia, N., López, P. and Martín, J. (2011). Aggressive interactions during feeding between native and invasive freshwater turtles. Biological Invasions (in press). doi:10.1007/s10530-010-9897-2CrossRefGoogle Scholar
Posada, D. and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817818. doi:10.1093/bioinformatics/14.9.817CrossRefGoogle ScholarPubMed
Prenter, J., MacNeil, C., Dick, J. T. A. and Dunn, A. M. (2004). Roles of parasites in animal invasions. Trends in Ecology & Evolution 19, 385390. doi:10.1016/j.tree.2004.05.002CrossRefGoogle ScholarPubMed
Ramsay, N. F., Ng, P. K. A., O'riordan, R. M. and Chou, L. M. (2007). The red-eared slider (Trachemys scripta elegans) in Asia: a review. In Biological Invaders in Inland Waters: Profiles, Distribution, and Threat (ed. Gherardi, F.), pp. 161174. Springer series in Invasion Ecology. ISBN-13: 978-1402060281CrossRefGoogle Scholar
Richarson, J. P. M. and Brooks, D. R. (1987). Polystomoidella mayesi n. sp. (Monogenea: Polystomatidae) from the urinary bladder of a Malaysian box turtle, Cuora amboinensis. Canadian Journal of Zoology 65, 15671569.CrossRefGoogle Scholar
Rohde, K. (1963). Polystomoides malayi n. sp. (Monogenea, Polystomatidae) aus der Harnblase von Cyclemys amboinensis in Malaya. Zeitschrift für Parasitenkunde 22, 278282.Google Scholar
Rohde, K. (1965). Studies on the genus Polystomoides Ward, 1917 (Monogenea). I. Description of 4 Malayan species, a key to the known species, and a comparison of the subcuticular layers in Polystomoides and some digenetic trematodes. Zoologische Jahbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere 92, 345368.Google Scholar
Rudolphi, C. A. (1819). Entozoorum synopsis cui accedunt mantissa duplex et indices locupletissimi. Berolini.CrossRefGoogle Scholar
Salo, P., Korpimäki, E., Banks, P. B., Nordström, M. and Dickman, C. R. (2007). Alien predators are more dangerous than native predators to prey populations. Proceedings of the Royal Society of London. Series B 274, 12371243. doi:10.1098/rspb.2006.0444CrossRefGoogle ScholarPubMed
Segade, P., Crespo, C., Ayres, C., Cordero, A., Arias, M. C., García-Estévez, J. M. and Iglesias Blanco, R. I. (2006). Eimeria species from the european pond turtle, Emys orbicularis (Reptilia: Testudines), in Galicia (NW Spain), with description of two new species. Journal of Parasitology 92, 6972. doi:10.1645/GE-3491.1CrossRefGoogle Scholar
Servan, J. and Arvy, C. (1997). Introduction de la tortue de Floride Trachemys scripta en France. Un nouveau compétiteur pour les espèces de tortues d'eau douce européennes. Bulletin Français de la Pêche et de la Pisciculture 344/345, 173177.CrossRefGoogle Scholar
Shea, K. and Chesson, P. (2002). Community ecology theory as a framework for biological invasions. Trends in Ecology & Evolution 17, 170176. doi:10.1016/S0169-5347(02)02495-3CrossRefGoogle Scholar
Stunkard, H. W. (1916). On the anatomy and relationships of some North American trematodes. Journal of Parasitology 3, 2127.CrossRefGoogle Scholar
Stunkard, H. W. (1924). On some trematodes from Florida turtles. Transactions of the American Microscopical Society 43, 97117.CrossRefGoogle Scholar
Swofford, D. L. (2002). PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods), version 4.0b9 Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599. doi:10.1093/molbev/msm092CrossRefGoogle ScholarPubMed
Taraschewski, H. (2006). Hosts and parasites as aliens. Journal of Helminthology 80, 99128. doi:10.1079/JOH2006364CrossRefGoogle ScholarPubMed
Telecky, T. M. (2001). United States import and export of live turtles and tortoises. Turtle and Tortoise Newsletter. The Newsletter of Chelonian Conservationists and Biologists 4, 813.Google Scholar
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680. doi:10.1093/nar/22.22.4673CrossRefGoogle ScholarPubMed
Tompkins, D. M., Sainsbury, A. W., Nettleton, P., Buxton, D. and Gurnell, J. (2002). Parapoxvirus causes a deleterious disease in red squirrels associated with UK population declines. Proceedings of the Royal Society of London. Series B 269, 529533. doi:10.1098/rspb.2001.1897CrossRefGoogle ScholarPubMed
Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. and Kuris, A. M. (2003). Introduced species and their missing parasites. Nature 421, 628630. doi:10.1038/nature01346CrossRefGoogle ScholarPubMed
Torchin, M. E., Lafferty, K. D. and Kuris, A. M. (2001). Release from parasites as natural enemies: increased performance of a globally introduced marine crab. Biological Invasions 3, 333345. doi:10.1023/A:1015855019360CrossRefGoogle Scholar
Une, Y., Uemura, K., Nakano, Y., Kamiie, J., Ishibashi, T. and Nomura, Y. (1999). Herpesvirus infection in tortoises (Malacochersus tornieri and Testudo horsfieldii). Veterinary Pathology 36, 624627. doi:10.1354/vp.36-6-624CrossRefGoogle Scholar
Valdeón, A., Crespo-Diaz, A., Egaňa-Callejo, A. and Gosá, A. (2010). Update of the pond slider Trachemys scripta (Schoepff, 1792) records in Navarre (Northern Spain), and presentation of the Aranzadi turtle trap for its population control. Aquatic Invasions 5, 297302. doi:10.3391/ai.2010.5.3.07CrossRefGoogle Scholar
Verneau, O. (2004). HDR – Origine et évolution des monogènes Polystomatidae, parasites d'amphibiens et de chéloniens d'eau douce. Université de Perpignan, France.Google Scholar
Verneau, O., Bentz, S., Sinnappah, N. D., Du Preez, L., Whittington, I. and Combes, C. (2002). A view of early vertebrate evolution inferred from the phylogeny of polystome parasites (Monogenea : Polystomatidae). Proceedings of the Royal Society of London. Series B 269, 535543. doi:10.1098/rspb.2001.1899CrossRefGoogle Scholar
Verneau, O., Du Preez, L. H., Laurent, V., Raharivololoniaina, L., Glaw, F. and Vences, M. (2009). The double odyssey of Madagascan polystome flatworms leads to new insights on the origins of their amphibian hosts. Proceedings of the Royal Society 276, 15751583. doi: 10.1098/rspb.2008.1530CrossRefGoogle ScholarPubMed
Vitousek, P. M., Mooney, H. A., Lubchenco, J. and Metillo, J. M. (1997). Human domination of hearth's ecosystems. Science 277, 494499. doi:10.1126/science.277.5325.494CrossRefGoogle Scholar
Wright, R. R. (1879). Contributions to American helminthology. Proceedings of the Canadian Institute 1, 5475.Google Scholar

Verneau Supplementary Appendix

Appendix S1. Genetic distances (uncorrected p-distances) inferred from comparison of the 55 COI nucleic acid haplotypes (345 aligned positions)

File 34 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 26
Total number of PDF views: 136 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 20th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Invasive species threat: parasite phylogenetics reveals patterns and processes of host-switching between non-native and native captive freshwater turtles
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Invasive species threat: parasite phylogenetics reveals patterns and processes of host-switching between non-native and native captive freshwater turtles
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Invasive species threat: parasite phylogenetics reveals patterns and processes of host-switching between non-native and native captive freshwater turtles
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *