Skip to main content Accessibility help
×
Home

Infection patterns and molecular data reveal host and tissue specificity of Posthodiplostomum species in centrarchid hosts

Published online by Cambridge University Press:  12 March 2018


Evan C. Boone
Affiliation:
Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois 61920, USA
Jeffrey R. Laursen
Affiliation:
Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois 61920, USA
Robert E. Colombo
Affiliation:
Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois 61920, USA
Scott J. Meiners
Affiliation:
Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois 61920, USA
Michael F. Romani
Affiliation:
Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, New York 13214, USA
Devon B. Keeney
Affiliation:
Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, New York 13214, USA
Corresponding
E-mail address:

Abstract

Posthodiplostomum minimum utilizes a three-host life cycle with multiple developmental stages. The metacercarial stage, commonly known as ‘white grub’, infects the visceral organs of many freshwater fishes and was historically considered a host generalist due to its limited morphological variation among a wide range of hosts. In this study, infection data and molecular techniques were used to evaluate the host and tissue specificity of Posthodiplostomum metacercariae in centrarchid fishes. Eleven centrarchid species from three genera were collected from the Illinois portion of the Ohio River drainage and necropsied. Posthodiplostomum infection levels differed significantly by host age, host genera and infection locality. Three Posthodiplostomum spp. were identified by DNA sequencing, two of which were relatively common within centrarchid hosts. Both common species were host specialists at the genus level, with one species restricted to Micropterus hosts and the other preferentially infecting Lepomis. Host specificity is likely dictated by physiological compatibility and deviations from Lepomis host specificity may be related to host hybridization. Posthodiplostomum species also differed in their utilization of host tissues. Neither common species displayed strong genetic structure over the scale of this study, likely due to their utilization of bird definitive hosts.


Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

*

Present address: U. S. Fish and Wildlife Service, Ashland Fish and Wildlife Conservation Office, 2800 Lake Shore Drive East, Ashland, Wisconsin 54806, USA


References

Blasco-Costa, I and Poulin, R (2013) Host traits explain the genetic structure of parasites: a meta-analysis. Parasitology 140, 13161322.CrossRefGoogle ScholarPubMed
Blasco-Costa, I, Cutmore, SC, Miller, TL and Nolan, MJ (2016) Molecular approaches to trematode systematics: ‘best practice’ and implications for future study. Systematic Parasitology 93, 295306.CrossRefGoogle ScholarPubMed
Bowles, J and McManus, DP (1993) Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Molecular and Biochemical Parasitology 57, 231240.CrossRefGoogle ScholarPubMed
Bowles, J, Blair, B and McManus, DP (1995) A molecular phylogeny of the human schistosomes. Molecular Phylogenetics and Evolution 4, 103109.CrossRefGoogle ScholarPubMed
Breden, F, Ptacek, MB, Rashed, M, Taphorn, D and Figueiredo, CA (1999) Molecular phylogeny of the live-bearing fish genus Poecilia (Cyprinodontiformes: Poeciliidae). Molecular Phylogenetics and Evolution 12, 95104.CrossRefGoogle Scholar
Bush, AO, Lafferty, KD, Lotz, JM, Shostak, AW (1997) Parasitology meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Cheng, L, Connor, TR, Sirén, J, Aanensen, DM and Corander, J (2013) Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Molecular Biology and Evolution 30, 12241228.CrossRefGoogle ScholarPubMed
Chow, S and Takeyama, H (2000) Nuclear and mitochondrial DNA analyses reveal four genetically separated breeding units of the swordfish. Journal of Fish Biology 56, 10871098.CrossRefGoogle Scholar
Corander, J, Waldmann, P and Sillanpää, MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163, 367374.Google ScholarPubMed
De León, GP and Nadler, SA (2010) What we don't recognize can hurt us: a plea for awareness about cryptic species. Journal of Parasitology 96, 453464.CrossRefGoogle ScholarPubMed
De León, GP-P, García-Varela, M, Pinacho-Pinacho, CD, Sereno-Uribe, AL and Poulin, R (2016) Species delimitation in trematodes using DNA sequences: Middle-American Clinostomum as a case study. Parasitology 143, 17731789.CrossRefGoogle Scholar
Dupont, F and Crivelli, AJ (1988) Do parasites confer a disadvantage to hybrids? A case study of Alburnus alburnus × Rutilus rubilio, a natural hybrid of Lake Mikri Prespa, northern Greece. Oecologia 75, 587592.CrossRefGoogle Scholar
ESRI (2015) ArcGIS 10.3. Redlands, California: Environmental System Research Institute, Inc.Google Scholar
Excoffier, L and Lischer, HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567.CrossRefGoogle ScholarPubMed
Godbout, JD, Aday, DD, Rice, JA, Bangs, MR and Quattro, JM (2009) Morphological models for identifying largemouth bass, spotted bass, and largemouth bass x spotted bass hybrids. North American Journal of Fisheries Management 29, 14251437.CrossRefGoogle Scholar
Grizzle, JM and Goldsby, MT Jr (1996). White grub Posthodiplostomum minimum centrarchi metacercariae in the liver of largemouth bass: quantification and effects on health. Journal of Aquatic Animal Health 8, 7074.2.3.CO;2>CrossRefGoogle Scholar
Herrmann, KK and Poulin, R (2011) Encystment site affects the reproductive strategy of a progenetic trematode in its fish intermediate host: is host spawning an exit for parasite eggs? Parasitology 138, 11831192.CrossRefGoogle ScholarPubMed
Hoberg, EP and Brooks, DR (2008) A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host-parasite systems. Journal of Biogeography 35, 15331550.CrossRefGoogle Scholar
Hoffman, GL (1958) Experimental studies on the cercaria and metacercaria of a strigeoid trematode, Posthodiplostomum minimum. Experimental Parasitology 7, 2350.CrossRefGoogle ScholarPubMed
Hoffman, GL (1999) Parasites of North American Freshwater Fishes. Ithaca, New York: Cornell University Press, 539p.Google Scholar
Ivanova, NV, Zemlak, TS, Hanner, RH and Hebert, PDN (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7, 544548.CrossRefGoogle Scholar
Keeney, DB, Waters, JM and Poulin, R (2007) Clonal diversity of the marine trematode Maritrema novaezealandensis within intermediate hosts: the molecular ecology of parasite life cycles. Molecular Ecology 16, 431439.CrossRefGoogle ScholarPubMed
Klak, G (1940) Neascus infestation of black-head, blunt-nosed, and other forage minnows. Transactions of the American Fisheries Society 69, 273278.CrossRefGoogle Scholar
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.CrossRefGoogle ScholarPubMed
Kvach, Y, Jurajda, P, Bryjová, A, Trichkova, T, Ribeiro, F, Přikrylová, I and Ondračková, M (2017) European distribution for metacercariae of the North American digenean Posthodiplostomum cf. minimum centrarchi (Strigeiformes: Diplostomidae). Parasitology International 66, 635642.CrossRefGoogle Scholar
Lane, B, Spier, T, Wiederholt, J and Meagher, S (2015) Host specificity of a parasitic fluke: is Posthodiplostomum minimum a centrarchid-infecting generalist or specialist? Journal of Parasitology 101, 617.CrossRefGoogle ScholarPubMed
Le Brun, N, Renaud, F, Berrebi, P and Lambert, A (1992) Hybrid zones and host-parasite relationships: effect on the evolution of parasitic specificity. Evolution 46, 5661.CrossRefGoogle Scholar
Locke, SA, McLaughlin, JD and Marcogliese, DJ (2010) DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada. Molecular Ecology 19, 28132827.CrossRefGoogle Scholar
Locke, SA, Al-Nasiri, FS, Caffara, M, Drago, F, Kalbe, M, Lapierre, AR, McLaughlin, JD, Nie, P, Overstreet, RM, Souza, GTR, Takemoto, RM and Marcogliese, DJ (2015) Diversity, specificity and speciation in larval Diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes. International Journal for Parasitology 45, 841855.CrossRefGoogle ScholarPubMed
Meade, TG and Bedinger, CA (1967) Posthodiplostomum minimum (Trematoda: Diplostomidae) in fishes of Madison County, eastern Texas. Southwestern Naturalist 12, 334335.CrossRefGoogle Scholar
Mladineo, I, Bott, NJ, Nowak, BF and Block, BA (2010) Multilocus phylogenetic analyses reveal that habitat selection drives the speciation of Didymozoidae (Digenea) parasitizing Pacific and Atlantic bluefin tunas. Parasitology 137, 10131025.CrossRefGoogle ScholarPubMed
Moszczynska, A, Locke, SA, McLaughlin, D, Marcogliese, DJ and Crease, TJ (2009) Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Molecular Ecology Resources 9(Suppl. 1), 7582.CrossRefGoogle ScholarPubMed
Near, TJ, Bolnick, DI and Wainwright, PC (2005) Fossil calibrations and molecular divergence time estimates in centrarchid fishes (Teleostei: Centrarchidae). Evolution 59, 17681782.CrossRefGoogle Scholar
Perkins, SL, Martinsen, ES and Falk, BG (2011) Do molecules matter more than morphology? Promises and pitfalls in parasites. Parasitology 138, 16641674.CrossRefGoogle ScholarPubMed
Pflieger, WL (1997) The Fishes of Missouri. Jefferson City, Missouri: Missouri Department of Conservation, 372p.Google Scholar
Poulin, R (2011) Uneven distribution of cryptic diversity among higher taxa of parasitic worms. Biology Letters 7, 241244.CrossRefGoogle ScholarPubMed
Poulin, R, Krasnov, BR and Mouillot, D (2011) Host specificity in phylogenetic and geographic space. Trends in Parasitology 27, 355361.CrossRefGoogle ScholarPubMed
Pracheil, BM and Muzzall, PM (2010) Population dynamics of larval trematodes in juvenile bluegills from Three Lakes II, Michigan, and the potential for overwinter parasite-induced host mortality. Transactions of the American Fisheries Society 139, 652659.CrossRefGoogle Scholar
Presa, P, Pardo, BG, Martínez, P and Bernatchez, L (2002) Phylogeographic congruence between mtDNA and rDNA ITS markers in brown trout. Molecular Biology and Evolution 19, 21612175.CrossRefGoogle ScholarPubMed
Quist, MC, Pegg, MA and DeVries, DR (2012) Age and growth. In Zale, AV, Parrish, DL and Sutton, TM (eds). Fisheries Techniques, 3rd edn. Bethesda, Maryland: American Fisheries Society, pp. 677731.Google Scholar
R Development Core Team (ed.) (2016) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.Google Scholar
Rambaut, A (2009) FigTree v1.3.1. Available at http://tree.bio.ed.ac.uk/.Google Scholar
Rauch, G, Kalbe, M and Reusch, TBH (2005) How a complex life cycle can improve a parasite's sex life. Journal of Evolutionary Biology 18, 10691075.CrossRefGoogle ScholarPubMed
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA and Huelsenbeck, JP (2012) Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Šimková, A, Davidova, M, Papousek, I and Vetesnik, L (2013) Does interspecies hybridization affect the host specificity of parasites in cyprinid fish? Parasites and Vectors 6, 95.CrossRefGoogle ScholarPubMed
Soldánová, M, Georgieva, S, Roháčová, J, Knudsen, R, Kuhn, JA, Henriksen, EH, Siwertsson, A, Shaw, JC, Kuris, AM, Amundsen, PA, Scholz, T, Lafferty, KD and Kostadinova, A (2017) Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. International Journal for Parasitology 47, 327345.CrossRefGoogle Scholar
Spall, RD and Summerfelt, RC (1969) Host-parasite relations of certain endoparasitic helminths of the channel catfish and white crappie in an Oklahoma reservoir. Bulletin of the Wildlife Disease Association 5, 4867.CrossRefGoogle Scholar
Stoyanov, B, Georgieva, S, Pankov, P, Kudlai, O, Kostadinova, A and Georgiev, BB (2017) Morphology and molecules reveal the alien Posthodiplostomum centrarchi Hoffman, 1958 as the third species of Posthodiplostomum Dubois, 1936 (Digenea: Diplostomidae) in Europe. Systematic Parasitology 94, 120.CrossRefGoogle Scholar
Thompson, JD, Higgins, DG and Gibson, TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Vilas, R, Criscione, CD and Blouin, MS (2005) A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology 131, 839846.CrossRefGoogle ScholarPubMed
Walsh, PS, Metzger, DA and Higuchi, R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10, 506513.Google ScholarPubMed

Boone et al. supplementary material

Boone et al. supplementary material 1

[Opens in a new window]
File 14 KB

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 29
Total number of PDF views: 107 *
View data table for this chart

* Views captured on Cambridge Core between 12th March 2018 - 29th November 2020. This data will be updated every 24 hours.

Hostname: page-component-8465588854-pvzfk Total loading time: 0.567 Render date: 2020-11-29T09:03:10.489Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sun Nov 29 2020 08:29:52 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Infection patterns and molecular data reveal host and tissue specificity of Posthodiplostomum species in centrarchid hosts
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Infection patterns and molecular data reveal host and tissue specificity of Posthodiplostomum species in centrarchid hosts
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Infection patterns and molecular data reveal host and tissue specificity of Posthodiplostomum species in centrarchid hosts
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *