Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-4z9h4 Total loading time: 23.037 Render date: 2021-04-11T08:35:27.646Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Egg-specific expression of protein with DNA methyltransferase activity in the biocarcinogenic liver fluke Clonorchis sinensis

Published online by Cambridge University Press:  03 June 2015

SEON-HEE KIM
Affiliation:
Department of Microbiology, Graduate School of Medicine, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, Republic of Korea
HYE-JEONG CHO
Affiliation:
Department of Microbiology, Graduate School of Medicine, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, Republic of Korea
WOON-MOK SOHN
Affiliation:
Department of Parasitology and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
CHUN-SEOB AHN
Affiliation:
Department of Molecular Parasitology, Sungkyunkwan University School of Medicine and Center for Molecular Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
YOON KONG
Affiliation:
Department of Molecular Parasitology, Sungkyunkwan University School of Medicine and Center for Molecular Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
HYUN-JONG YANG
Affiliation:
Department of Parasitology, Ewha Womans University School of Medicine, Seoul, Republic of Korea
YOUNG-AN BAE
Affiliation:
Department of Microbiology, Graduate School of Medicine, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, Republic of Korea
Corresponding
E-mail address:

Summary

Despite recent reports regarding the biology of cytosine methylation in Schistosoma mansoni, the impact of the regulatory machinery remains unclear in diverse platyhelminthes. This ambiguity is reinforced by discoveries of DNA methyltransferase 2 (DNMT2)-only organisms and the substrate specificity of DNMT2 preferential to RNA molecules. Here, we characterized a novel DNA methyltransferase, named CsDNMT2, in a liver fluke Clonorchis sinensis. The protein exhibited structural properties conserved in other members of the DNMT2 family. The native and recombinant CsDNMT2 exhibited considerable enzymatic activity on DNA. The spatiotemporal expression of CsDNMT2 mirrored that of 5-methylcytosine (5 mC), both of which were elevated in the C. sinensis eggs. However, CsDNMT2 and 5 mC were marginally detected in other histological regions of C. sinensis adults including ovaries and seminal receptacle. The methylation site seemed not related to genomic loci occupied by progenies of an active long-terminal-repeat retrotransposon. Taken together, our data strongly suggest that C. sinensis has preserved the functional DNA methylation machinery and that DNMT2 acts as a genuine alternative to DNMT1/DNMT3 to methylate DNA in the DNMT2-only organism. The epigenetic regulation would target functional genes primarily involved in the formation and/or maturation of eggs, rather than retrotransposons.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bae, Y. A., Ahn, D. W., Lee, E. G., Kim, S. H., Cai, G. B., Kang, I., Sohn, W. M. and Kong, Y. (2013 a). Differential activation of diverse glutathione transferases of Clonorchis sinensis in response to the host bile and oxidative stressors. PLoS Neglected Tropical Diseases 7, e2211.CrossRefGoogle ScholarPubMed
Bae, Y. A., Cai, G. B., Kim, S. H., Sohn, W. M. and Kong, Y. (2013 b). Expression pattern and substrate specificity of Clonorchis sinensis tyrosinases. International Journal for Parasitology 43, 891900.CrossRefGoogle ScholarPubMed
Bae, Y. A. and Kong, Y. (2003). Evolutionary course of CsRn1 long-terminal-repeat retrotransposon and its heterogeneous integrations into the genome of the liver fluke, Clonorchis sinensis . Korean Journal of Parasitology 41, 209219.CrossRefGoogle ScholarPubMed
Bae, Y. A., Moon, S. Y., Kong, Y., Cho, S. Y. and Rhyu, M. G. (2001). CsRn1, a novel retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons. Molecular Biology and Evolution 18, 14741483.CrossRefGoogle Scholar
Bouvard, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L. and Cogliano, V., WHO International Agency for Research on Cancer Monograph Working Group (2009). A review of human carcinogens - Part B: biological agents. Lancet Oncology 10, 321322.CrossRefGoogle Scholar
Cai, G. B., Bae, Y. A., Kim, S. H., Sohn, W. M., Lee, Y. S., Jiang, M. S., Kim, T. S. and Kong, Y. (2008). Vitellocyte-specific expression of phospholipid hydroperoxide glutathione peroxidases in Clonorchis sinensis . International Journal for Parasitology 38, 16131623.CrossRefGoogle ScholarPubMed
DeLano, W. L. (2002). The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA.Google Scholar
Dong, A., Yoder, J. A., Zhang, X., Zhou, L., Bestor, T. H. and Cheng, X. (2001). Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Research 29, 439448.CrossRefGoogle Scholar
Fisher, O., Siman-Tov, R. and Ankri, S. (2004). Characterization of cytosine methylated regions and 5-cytosine DNA methyltransferase (Ehmeth) in the protozoan parasite Entamoeba histolytica . Nucleic Acids Research 32, 287297.CrossRefGoogle ScholarPubMed
Geyer, K. K., Chalmers, I. W., Mackintosh, N., Hirst, J. E., Geoghegan, R., Badets, M., Brophy, P. M., Brehm, K. and Hoffmann, K. F. (2013). Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes. BMC Genomics 14, 462.CrossRefGoogle ScholarPubMed
Geyer, K. K., Rodríguez López, C. M., Chalmers, I. W., Munshi, S. E., Truscott, M., Heald, J., Wilkinson, M. J. and Hoffmann, K. F. (2011). Cytosine methylation regulates oviposition in the pathogenic blood fluke Schistosoma mansoni . Nature Communications 2, 424.CrossRefGoogle ScholarPubMed
Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C. L., Zhang, X., Golic, K. G., Jacobsen, S. E. and Bestor, T. H. (2006). Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395398.CrossRefGoogle ScholarPubMed
Hong, S. T. (2003). Clonorchis sinensis . In International Handbook of Foodborne Pathogens (Eds. Miliotis, M. D. and Bier, J. W.), pp. 581592, Marcel Dekker Inc., New York.Google Scholar
Huang, Y., Chen, W., Wang, X., Liu, H., Chen, Y., Guo, L., Luo, F., Sun, J., Mao, Q., Liang, P., Xie, Z., Zhou, C., Tian, Y., Lv, X., Huang, L., Zhou, J., Hu, Y., Li, R., Zhang, F., Lei, H., Li, W., Hu, X., Liang, C., Xu, J., Li, X. and Yu, X. (2013). The carcinogenic liver fluke, Clonorchis sinensis: new assembly, reannotation and analysis of the genome and characterization of tissue transcriptomes. PLoS ONE 8, e54732.Google ScholarPubMed
Jeltsch, A. (2010). Phylogeny of methylomes. Science 328, 837838.CrossRefGoogle ScholarPubMed
Jeltsch, A., Nellen, W. and Lyko, F. (2006). Two substrate are better than one: dual specificities for DNMT2 methyltansferases. Trends in Biochemical Sciences 31, 306308.CrossRefGoogle Scholar
Jurkowski, T. P. and Jeltsch, A. (2011). On the evolutionary origin of eukaryotic DNA methyltransferases and Dnmt2. PLoS ONE 6, e28104.CrossRefGoogle ScholarPubMed
Jurkowski, T. P., Meusburger, M., Phalke, S., Helm, M., Nellen, W., Reuter, G. and Jeltsch, A. (2008). Human DNMT2 methylates tRNAAsp molecules using a DNA methyltransferase-like catalytic mechanism. RNA 14, 16631670.CrossRefGoogle ScholarPubMed
Kano, H., Godoy, I., Courtney, C., Vetter, M. R., Gerton, G. L., Ostertag, E. M. and Kazazian, H. H. Jr. (2009). L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes & Development 23, 13031312.CrossRefGoogle ScholarPubMed
Keizer, J. and Utzinger, J. (2009). Food-borne trematodiases. Clinical Microbiology Reviews 22, 466483.CrossRefGoogle Scholar
Kinney, S. R. M. and Pradhan, S. (2011). Regulation of expression and activity of DNA (cytosine-5) methyltransferases in mammalian cells. Progress in Molecular Biology and Translational Science 101, 311333.CrossRefGoogle ScholarPubMed
Law, J. A. and Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics 11, 204220.CrossRefGoogle ScholarPubMed
Li, S., Du, J., Yang, H., Yin, J., Ding, J. and Zhong, J. (2013). Functional and structural characterization of DNMT2 from Spodoptera frugiperda . Journal of Molecular Cell Biology 5, 6466.CrossRefGoogle ScholarPubMed
Müller, S., Windhof, I. M., Maximov, V., Jurkowski, T., Jeltsch, A., Förstner, K. U., Sharma, C. M., Gräf, R. and Nellen, W. (2013). Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homoloue (DnmA). Nucleic Acids Research 41, 86158627.CrossRefGoogle Scholar
Raddatz, G., Guzzardo, P. M., Olova, N., Fantappié, M. R., Rampp, M., Schaefer, M., Reik, W., Hannon, G. J. and Lyko, F. (2013). Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proceedings of the National Academy of Science of the United States of America 110, 86278631.CrossRefGoogle ScholarPubMed
Rountree, M. R., Bachman, K. E. and Baylin, S. B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genetics 25, 269277.CrossRefGoogle Scholar
Schaefer, M. and Lyko, F. (2010). Solving the Dnmt2 enigma. Chromosoma 119, 3540.CrossRefGoogle ScholarPubMed
Schultz, E. C., Roth, H. M., Ankri, S. and Finer, R. (2012). Structure analysis of Entamoeba histolytica DNMT2 (EhMeth). PLoS ONE 7, e38728.Google Scholar
Shin, H. R., Oh, J. K., Masuyer, E., Curado, M. P., Bouvard, V., Fang, Y. Y., Wiangnon, S., Sripa, B. and Hong, S. T. (2010). Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Science 101, 579585.CrossRefGoogle ScholarPubMed
Song, J., Rechkoblit, O., Bestor, T. H. and Patel, D. J. (2011). Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331, 10361040.CrossRefGoogle ScholarPubMed
Takeshita, K., Suetake, I., Yamashita, E., Suga, M., Narita, H., Nakagawa, A. and Tajima, S. (2011). Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1). Proceedings of the National Academy of Science of the United States of America 108, 90559059.CrossRefGoogle Scholar
The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (2009). The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460, 345352.CrossRefGoogle Scholar
Thomson, C. A., Olson, M., Jackson, L. M. and Schrader, J. W. (2012). A simplified method for the efficient refolding and purification of recombinant human GM-CSF. PLoS ONE 7, e49891.CrossRefGoogle ScholarPubMed
Tsai, I. J., Zarowiecki, M., Holroyd, N., Garciarrubio, A., Sanchez-Flores, A., Brooks, K. L., Tracey, A., Bobes, R. J., Fragoso, G., Sciutto, E., Aslett, M., Beasley, H., Bennett, H. M., Cai, J., Camicia, F., Clark, R., Cucher, M., De Silva, N., Day, T. A., Deplazes, P., Estrada, K., Fernández, C., Holland, P. W. H., Hou, J., Hu, S., Huckvale, T., Hung, S. S., Kamenetzky, L., Keane, J. A., Kiss, F., The Taenia solium Genome Consortium et al. (2013). The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496, 5763.CrossRefGoogle ScholarPubMed
Wang, X., Chen, W., Huang, Y., Sun, J., Men, J., Liu, H., Luo, F., Guo, L., Lv, X., Deng, C., Zhou, C., Fan, Y., Li, X., Huang, L., Hu, Y., Liang, C., Hu, X., Xu, J. and Yu, X. (2011). The draft genome of the carcinogenic human liver fluke Clonorchis sinensis . Genome Biology 12, R107.CrossRefGoogle ScholarPubMed
Wojciechowski, M., Czapinska, H. and Bochtler, M. (2013). CpG underrepresentation and the bacterial CpG-specific DNA methyltransferase M.MpeI. Proceedings of the National Academy of Science of the United States of America 110, 105110.CrossRefGoogle ScholarPubMed
Yoder, J. A., Walsh, C. P. and Bestor, T. H. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends in Genetics 13, 335–40.CrossRefGoogle ScholarPubMed
Zemach, A. and Zilberman, D. (2010). Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Current Biology 20, R780R785.CrossRefGoogle ScholarPubMed
Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40.CrossRefGoogle ScholarPubMed

Kim supplementary material

Table S1

File 17 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 17
Total number of PDF views: 92 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 11th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Egg-specific expression of protein with DNA methyltransferase activity in the biocarcinogenic liver fluke Clonorchis sinensis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Egg-specific expression of protein with DNA methyltransferase activity in the biocarcinogenic liver fluke Clonorchis sinensis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Egg-specific expression of protein with DNA methyltransferase activity in the biocarcinogenic liver fluke Clonorchis sinensis
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *