Skip to main content Accessibility help
×
Home

Article contents

Absence of haemoparasite infection in the fossorial amphisbaenian Trogonophis wiegmanni

Published online by Cambridge University Press:  25 May 2016

JOSÉ MARTÍN
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
MARIO GARRIDO
Affiliation:
Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
JESÚS ORTEGA
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
ROBERTO GARCÍA-ROA
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
ALEJANDRO IBÁÑEZ
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
ALFONSO MARZAL
Affiliation:
Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, 06071 Badajoz, Spain
Corresponding
E-mail address:

Summary

Blood parasites such as haemogregarines and haemosporidians have been identified in almost all groups of vertebrates. However, very little is known about biodiversity of these parasites and their effects on some major groups of reptiles such as amphisbaenians, a distinctive group with many morphological and ecological adaptations to fossorial life. Conditions of the fossorial environment might also affect host–parasite relationships. We investigated the presence and the potential prevalence of three genera of haemoparasitic aplicomplexan blood parasites (Hepatozoon, Plasmodium and Haemoproteus) in the amphisbaenian Trogonophis wiegmanni, a fossorial worm lizard species from North West Africa. Blood parasite infection was not detected in T. wiegmanni, both in visual surveys of blood smears and using molecular methods to detect DNA of such parasites in the blood of the potential amphisbaenian hosts. We discuss how conditions of the fossorial environment might affect blood parasitaemias in amphisbaenians as well as in other fossorial reptiles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Amo, L., López, P. and Martín, J. (2004). Prevalence and intensity of haemogregarinid blood parasites in a population of the Iberian rock lizard, Lacerta monticola . Parasitology Research 94, 290293.CrossRefGoogle Scholar
Amo, L., Fargallo, J. A., Martínez-Padilla, J., Millán, J., López, P. and Martín, J. (2005). Prevalence and intensity of blood and intestinal parasites in a field population of a Mediterranean lizard, Lacerta lepida . Parasitology Research 96, 413417.CrossRefGoogle Scholar
Bennett, G. F., Montgomerie, R. and Seutin, G. (1992). Scarcity of haematozoa in birds breeding on the Arctic tundra of North America. The Condor 94, 289292.CrossRefGoogle Scholar
Davies, A. J. and Johnston, M. R. (2000). The biology of some intraerythrocytic parasites of fishes, amphibia and reptiles. Advances in Parasitology 45, 1107.CrossRefGoogle ScholarPubMed
Davis, A. K., Benz, A. C., Ruyle, L. E., Kistler, W. M., Shock, B. C. and Yabsley, M. J. (2013). Searching before it is too late: a survey of blood parasites in Ctenosaura melanosterna, a critically endangered reptile of Honduras. ISRN Parasitology 2013, Article ID 495304, 16.CrossRefGoogle ScholarPubMed
Dietrich, M., Gómez-Díaz, E. and McCoy, K. D. (2011). Worldwide distribution and diversity of seabird ticks: implications for the ecology and epidemiology of tick-borne pathogens. Vector-Borne and Zoonotic Diseases 11, 453470.CrossRefGoogle ScholarPubMed
Gans, C. (1978). The characteristics and affinities of the Amphisbaenia. Transactions of the Zoological Society of London 34, 347416.CrossRefGoogle Scholar
Gans, C. (2005). Checklist and bibliography of the amphisbaenia of the World. Bulletin of the American Museum of Natural History. 280, 1130.2.0.CO;2>CrossRefGoogle Scholar
García, L. V., Marañón, T., Ojeda, F., Clemente, L. and Redondo, R. (2002). Seagull influence on soil properties, chenopod shrub distribution, and leaf nutrient status in semi-arid Mediterranean islands. Oikos 98, 7586.CrossRefGoogle Scholar
Garrido, M. and Pérez-Mellado, V. (2013). Prevalence and intensity of blood parasites in insular lizards. Zoologischer Anzeiger – A Journal of Comparative Zoology 252, 588592.CrossRefGoogle Scholar
Goater, T. M., Goater, C. P. and Esch, G. W. (2014). Parasitism. The Diversity and Ecology of Animal Parasites, 2nd edn. Cambridge University Press, Cambridge.Google Scholar
Harris, D. J., Maia, J. P. M. C. and Perera, A. (2011). Molecular characterization of Hepatozoon species in reptiles from the Seychelles. Journal of Parasitology 97, 106110.CrossRefGoogle ScholarPubMed
Hellgren, O., Waldenström, J. and Bensch, S. (2004). A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. Journal of Parasitology 90, 797802.CrossRefGoogle ScholarPubMed
Jacobson, E. (2007). lnfectious Diseases and Pathology of Reptiles. CRC Press, Florida.CrossRefGoogle Scholar
Klein, T. A., Young, D. G., Telford, S. R. and Kimsey, R. (1987). Experimental transmission of Plasmodium mexicanum by bites of infected Lutzomyia vexator (Diptera: Psychodidae). Journal of the American Mosquito Control Association 3, 154164.Google Scholar
Lainson, R. (2003). Some coccidial parasites of the lizard Amphisbaena alba (Reptilia: Amphisbaenia: Amphisbaenidae). Memórias do Instituto Oswaldo Cruz 98, 927936.CrossRefGoogle Scholar
Little, R. M. and Earlé, R. A. (1994). Lack of avian haematozoa in the Phasianinae of Robben Island. Ostrich 65, 343344.Google Scholar
Martín, J., Polo-Cavia, N., Gonzalo, A., López, P. and Civantos, E. (2011). Structure of a population of the amphisbaenian Trogonophis wiegmanni in North Africa. Herpetologica 67, 250257.CrossRefGoogle Scholar
Martín, J., López, P. and García, L. V. (2013 a). Soil characteristics determine microhabitat selection of the fossorial amphisbaenian Trogonophis wiegmanni . Journal of Zoology 290, 265272.CrossRefGoogle Scholar
Martín, J., Ortega, J., López, P., Pérez-Cembranos, A. and Pérez-Mellado, V. (2013 b). Fossorial life does not constrain diet selection in the amphisbaenian Trogonophis wiegmanni . Journal of Zoology 291, 226233.CrossRefGoogle Scholar
Martín, J., López, P., Gutiérrez, E. and García, L. V. (2015). Natural and anthropogenic alterations of the soil affect body condition of the fossorial amphisbaenian Trogonophis wiegamnni in North Africa. Journal of Arid Environments 122, 3036.CrossRefGoogle Scholar
Martínez-Abraín, A., Esparza, B. and Oro, D. (2004). Lack of blood parasites in bird species: does absence of blood parasite vectors explain it all. Ardeola 51, 225232.Google Scholar
Medeiros, M. C. I., Hamer, G. L. and Ricklefs, R. E. (2013). Host compatibility rather than vector-host-encounter rate determines the host range of avian Plasmodium parasites. Proceedings of the Royal Society of London, Series B 280, 29472954.CrossRefGoogle ScholarPubMed
Megía-Palma, R., Martínez, J., Acevedo, I., Martín, J., García-Roa, R., Ortega, J., Peso-Fernández, M., Albaladejo, G., Cooper, R. D., Paranjpe, D. A., Sinervo, B. R. and Merino, S. (2015). Phylogeny of the reptilian Eimeria: are Choleoeimeria and Acroeimeria valid generic names? Zoologica Scripta 44, 684692.CrossRefGoogle Scholar
Mendes, L., Piersma, T., Lecoq, M., Spaans, B. and Ricklefs, R. E. (2005). Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109, 396404.CrossRefGoogle Scholar
Papenfuss, T. J. (1982). The ecology and systematics of the amphisbaenian genus Bipes . Occasional Papers of the Californian Academy of Sciences 136, 142.Google Scholar
Perkins, S. L. and Keller, A. K. (2001). Phylogeny of nuclear small subunit rRNA genes of hemogregarines amplified with specific oligonucleotídeos. Journal of Parasitology 87, 870876.CrossRefGoogle Scholar
Pessoa, S. B. (1968). Sobre uma hemogregarina de Amphisbaena alba . Gazeta Médica da Bahia 68, 7578.Google Scholar
Piersma, T. (1997). Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos 80, 623631.CrossRefGoogle Scholar
Quillfeldt, P., Arriero, E., Martínez, J., Masello, J. F. and Merino, S. (2011). Prevalence of blood parasites in seabirds – a review. Frontiers in Zoology 8, 26.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (1992). Embryonic development period and the prevalence of avian blood parasites. Proceedings of the National Academy of Sciences of the United States of America 89, 47224725.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritch, F. J. and Maniatis, T. (2002). Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.Google Scholar
Schall, J. J. (1990). Virulence of lizard malaria: the evolutionary ecology of an ancient parasite-host association. Parasitology 100, S35S52.CrossRefGoogle ScholarPubMed
Smith, T. G. (1996). The genus Hepatozoon (Apicomplexa; Adeleina). Journal of Parasitology 82, 565585.CrossRefGoogle Scholar
Telford, S. R. (1984). Haemoparasites of reptiles. In Diseases of Amphibians and Reptiles (ed. Hoff, G. L., Frye, F. L. and Jacobson, E. R.), pp. 385517. Plenum Press, New York.CrossRefGoogle Scholar
Telford, S. R. (2008). Hemoparasites of the Reptilia: Color atlas and text. CRC Press, Boca Raton, Florida.CrossRefGoogle Scholar
Ujvari, B., Madsen, T. and Olsson, M. (2004). High prevalence of Hepatozoon spp. (Apicomplexa, Hepatozoidae) infection in wáter pythons (Liasis fuscus) from tropical Australia. Journal of Parasitology 90, 670672.CrossRefGoogle ScholarPubMed
Vardo-Zalik, A. M. and Schall, J. J. (2008). Clonal diversity within infections and the virulence of a malaria parasite, Plasmodium mexicanum . Parasitology 135, 13631372.CrossRefGoogle ScholarPubMed
Wozniak, E. J., Kazacos, K. R., Telford, S. R. and Mclaughlin, G. (1996). Characterization of the clinical and anatomical pathological changes associated with Hepatozoon mocassini infections in unnatural reptilian hosts. International Journal of Parasitology 26, 141146.CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 19
Total number of PDF views: 84 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-pkmq7 Total loading time: 0.414 Render date: 2021-01-26T16:27:44.537Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Absence of haemoparasite infection in the fossorial amphisbaenian Trogonophis wiegmanni
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Absence of haemoparasite infection in the fossorial amphisbaenian Trogonophis wiegmanni
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Absence of haemoparasite infection in the fossorial amphisbaenian Trogonophis wiegmanni
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *