Skip to main content Accessibility help
×
×
Home

Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of Late Permian through Late Triassic foraminifera

  • Brianna L. Rego (a1), Steve C. Wang (a2), Demir Altiner (a3) and Jonathan L. Payne (a1)

Abstract

One of the best-recognized patterns in the evolution of organismal size is the tendency for mean and maximum size within a clade to decrease following a major extinction event and to increase during the subsequent recovery interval. Because larger organisms are typically thought to be at higher extinction risk than their smaller relatives, it has commonly been assumed that size reduction mostly reflects the selective extinction of larger species. However, to our knowledge the relative importance of within- and among-lineage processes in driving overall trends in body size has never been compared quantitatively. In this study, we use a global, specimen-level database of foraminifera to study size evolution from the Late Permian through Late Triassic. We explicitly decompose size evolution into within- and among-genus components. We find that size reduction following the end-Permian mass extinction was driven more by size reduction within surviving species and genera than by the selective extinction of larger taxa. Similarly, we find that increase in mean size across taxa during Early Triassic biotic recovery was a product primarily of size increase within survivors and the extinction of unusually small taxa, rather than the origination of new, larger taxa. During background intervals we find no strong or consistent tendency for extinction, origination, or within-lineage change to move the overall size distribution toward larger or smaller sizes. Thus, size stasis during background intervals appears to result from small and inconsistent effects of within- and among-lineage processes rather than from large but offsetting effects of within- and among-taxon components. These observations are compatible with existing data for other taxa and extinction events, implying that mass extinctions do not influence size evolution by simply selecting against larger organisms. Instead, they appear to create conditions favorable to smaller organisms.

Copyright

Corresponding author

∗∗Corresponding author

References

Hide All
Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.
Apthorpe, M. 2003. Early to lowermost Middle Triassic Foraminifera from the Locker Shale of Hampton-1 well, Western Australia. Journal of Micropalaeontology 22:127.
Arnold, A. J., Kelly, D. C., and Parker, W. C. 1995. Causality and Cope's rule: evidence from the planktonic foraminifera. Journal of Paleontology 69:203210.
Arthur, M. A., Zachos, J. C., and Jones, D. S. 1987. Primary productivity and the Cretaceous/Tertiary boundary event in the oceans. Cretaceous Research 8:4354.
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:68546859.
Benton, M. J., and Twitchett, R. J. 2003. How to kill (almost) all life: the end-Permian extinction event. Trends in Ecology and Evolution 18:358365.
Borths, M. 2008. Crinoids in Lilliput: Morphological change in class Crinoidea across the Ordovician-Silurian boundary. B.S. The Ohio State University, Colombus, Oh.
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.
Brown, J. H., Marquet, P. A., and Taper, M. L. 1993. Evolution of body size: consequences of an energetic definition of fitness. American Naturalist 142:573584.
Budd, A. F., and Johnson, K. G. 1991. Size-related evolutionary patterns among species and subgenera in the Strombina group (Gastropoda: Columbellidae). Journal of Paleontology 65:417434.
Cao, C., Love, G. D., Hays, L. E., Wang, W., Shen, S., and Summons, R. E. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters 281:188201.
Clapham, M. E., and Payne, J. L. 2011. Acidification, anoxia, and extinction: a multiple regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39:10591062.
Clauset, A., and Erwin, D. H. 2008. The evolution and distribution of species body size. Science 321:399401.
Clémence, M.-E., Bartolini, A., Gardin, S., Paris, G., Beaumont, V., and Page, K. N. 2010. Early Hettangian benthic-planktonic coupling at Doniford (SW England): palaeoenvironmental implications for the aftermath of the end-Triassic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 295:102115.
Damuth, J. 1991. Ecology—of size and abundance. Nature 351:268269.
D'Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D., and Lindinger, M. 1998. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282:276279.
Erwin, D. H. 2006. Extinction: how life on Earth nearly ended 250 million years ago. Princeton University Press, Princeton, N.J.
Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O. M. E., and Falkowski, P. G. 2005. Climatically driven macroevolutionary patterns in the size of marine diatoms of the Cenozoic. Proceedings of the National Academy of Sciences USA 102:89278932.
Finkel, Z. V., Sebbo, J., Feist-Burkhardt, S., Irwin, A. J., Katz, M. E., Schofield, O. E. M., Young, J. R., and Falkowski, P. G. 2007. A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proceedings of the National Academy of Sciences USA 104:2041620420.
Finnegan, S., Payne, J. L., and Wang, S. C. 2008. The Red Queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34:318341.
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes, N. C., Tripati, A. K., and Fischer, W. W. 2011. The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science 331:903906.
Fraiser, M. L., and Bottjer, D. J. 2004. The non-actualistic Early Triassic gastropod fauna: a case study of the Lower Triassic Sinbad Limestone member. Palaios 19:259275.
Ganino, C., and Arndt, N. T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37:323326.
Gazdzicki, A. 1983. Foraminifers and biostratigraphy of Upper Triassic and Lower Jurassic of the Slovakian and Polish Carpathians. Palaeontologia Polonica 44:109169.
Grice, K., Cao, C. Q., Love, G. D., Bottcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W., and Jin, Y. G. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706709.
Groves, J. R., Rettori, R., Payne, J. L., Boyce, M. D., and Altiner, D. 2007. End-Permian mass extinction of Lagenide foraminifers in the southern Alps (northern Italy). Journal of Paleontology 81:415434.
Haig, D. W., McCartain, E., Barber, L., and Backhouse, J. 2007. Triassic-Lower Jurassic foraminiferal indices for Bahaman-type carbonate-bank limestones, Cablac Mountain, East Timor. Journal of Foraminiferal Research 37:248264.
Hallam, A. 1975. Evolutionary size increase and longevity in Jurassic bivalves and ammonites. Nature 258:493496.
Hallock, P. 1985. Why are larger foraminifera large? Paleobiology 11:195208.
Harper, E. M., Peck, L. S., and Hendry, K. R. 2009. Patterns of shell repair in articulate brachiopods indicate size constitutes a refuge from predation. Marine Biology 156:19932000.
Hauser, M., Martini, R., Burns, S., Dumitrica, P., Krystyn, L., Matter, A., Peters, T., and Zaninetti, L. 2001. Triassic stratigraphic evolution of the Arabian–Greater India embayment of the southern Tethys margin. Eclogae Geologicae Helvetiae 94:2962.
He, W.-H., Twitchett, R. J., Zhang, Y., Shi, G. R., Feng, Q.-L., Yu, J.-X., Wu, S.-B., and Peng, X.-F. 2010. Controls on body size during the Late Permian mass extinction event. Geobiology 8:391402.
Holland, C. H., and Copper, P. 2008. Ordovician and Silurian nautiloid cephalopods from Anticosti Island: traject across the Ordovician-Silurian (O-S) mass extinction boundary. Canadian Journal of Earth Sciences 45:10151038.
Huang, B., Harper, D. A. T., Zhan, R., and Rong, J. 2010. Can the Lilliput Effect be detected in the brachiopod faunas of South China following the terminal Ordovician mass extinction? Palaeogeography, Palaeoclimatology, Palaeoecology 285:277286.
Hunt, G., and Roy, K. 2006. Climate change, body size evolution, and Cope's rule in deep-sea ostracodes. Proceedings of the National Academy of USA 103:13471352.
Hunt, G., Wicaksono, S. A., Brown, J. E., and Macleod, K. G. 2010. Climate-driven body-size trends in the ostracod fauna of the deep Indian Ocean. Palaeontology 53:12551268.
Inselberg, A. 1985. The plane with parallel coordinates. Visual Computer 1:6991.
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.
Jablonski, D. 1997. Body-size evolution in Cretaceous molluscs and the status of Cope's rule. Nature 385:250252.
Jablonski, D. 2005. Mass extinctions and macroevolution. InVrba, E. S. and Eldredge, N., eds. Macroevolution: diversity, disparity, contingency. Paleobiology 31 (Suppl. to No. 2):192210.
Jablonski, D., and Raup, D. M. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.
Kaiho, K. 1998. Global climatic forcing of deep-sea benthic foraminiferal test size during the past 120 m.y. Geology 26:491494.
Kiessling, W., and Simpson, C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology 17:5667.
Kobayashi, F. 1997. Upper Permian foraminifers from the Iwai-Kanyo area, West Tokyo, Japan. Journal of Foraminiferal Research 27:186195.
Kobayashi, F. 2005. Permian foraminifers from the Itsukaichi-Ome area, west of Tokyo, Japan. Journal of Paleontology 79:413432.
Kobayashi, F., Martini, R., and Zaninetti, L. 2005. Anisian foraminifers from allochthonous limestones of the Tanoura formation (Kurosegawa Terrane, West Kyushu, Japan). Géobios 38:751763.
Kristan-Tollmann, E. 1986. Foraminiferen aus dem rhaetischen Kuta-Kalk von Papua/Neuguinea. Mitteilungen der Oesterreichischen Geologischen Gesellschaft 78:291317.
Leven, E. J., and Okay, A. I. 1996. Foraminifera from the exotic Permo-Carboniferous limestone blocks in the Karakaya Complex, Northwestern Turkey. Rivista Italiana di Paleontologia e Stratigrafia 102:139174.
Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31:578590.
Luo, G., Wang, Y., Algeo, T. J., Kump, L. R., Bai, X., Yang, H., Yao, L., and Xie, S. 2011. Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction. Geology 39:647650.
Mancinelli, A., Chiocchini, M., Chiocchini, R. A., and Romano, A. 2005. Biostratigraphy of Upper Triassic - Lower Jurassic carbonate platform sediments of the Central-Southern Apennines (Italy). Rivista Italiana di Paleontologia e Stratigrafia 111:271283.
McGhee, G. R., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211:289297.
McRoberts, C. A., and Newton, C. R. 1995. Selective extinction among end-Triassic European bivalves. Geology 23:102104.
Metcalfe, B., Twitchett, R. J., and Price-Lloyd, N. 2011. Changes in size and growth rate of ‘Lilliput' animals in the earliest Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology 308:171180.
Meyer, K. M., Kump, L. R., and Ridgwell, A. 2008. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36:747750.
Meyer, K. M., Jost, A. B., Yu, M., and Payne, J. L. 2011. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters 302:278284.
Miller, A. I., and Foote, M. 2003. Increased longevities of post-Paleozoic marine genera after mass extinctions. Science 302:10301032.
Morten, S. D., and Twitchett, R. J. 2009. Fluctuations in the body size of marine invertebrates through the Pliensbachian-Toarcian extinction event: extinction, dwarfing and the Lilliput effect. Palaeogeography, Palaeoclimatology, Palaeoecology 284:10301032.
Nagy, J., Hess, S., and Alve, E. 2010. Environmental significance of foraminiferal assemblages dominated by small-sized Ammodiscus and Trochammina in Triassic and Jurassic delta-influenced deposits. Earth-Science Reviews 99:3149.
Niklas, K. J. 1994. The scaling of plant and animal body mass, length, and diameter. Evolution 48:4454.
Norris, R. D. 1991. Biased extinction and evolutionary trends. Paleobiology 17:388399.
Novack-Gottshall, P. M. 2008a. Ecosystem-wide body-size trends in Cambrian-Devonian marine invertebrate lineages. Paleobiology 34:210228.
Novack-Gottshall, P. M. 2008b. Using simple body size metrics to estimate fossil body volume: empirical validation using diverse Paleozoic invertebrates. Palaios 23:163173.
Novack-Gottshall, P. M., and Lanier, M. A. 2008. Scale-dependence of Cope's rule in body size evolution of Paleozoic brachiopods. Proceedings of the National Academy of Sciences USA 105:54305434.
Ozaki, K., Tajima, S., and Tajika, E. 2011. Conditions required for oceanic anoxia/euxinia: constraints from a one-dimensional ocean biogeochemical cycle model. Earth and Planetary Science Letters 304:270279.
Paine, R. T. 1976. Size-limited predation: an observational and experimental approach with the Mytilus: Pisaster interaction. Ecology 57:858873.
Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269290.
Payne, J. L., and Clapham, M. E. 2012. End-Permian extinction in the oceans: Lessons for the 21st century? Annual Review of Earth and Planetary Sciences 40:89111.
Payne, J. L., and Finnegan, S. 2006. Controls on marine animal biomass through geological time. Geobiology 4:110.
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.
Payne, J. L., and van de Schootbrugge, B. 2007. Life in Triassic oceans: links between planktonic and benthic recovery and radiation. Pp. 165189inFalkowski, P. G. and Knoll, A. H., eds. Evolution of primary producers in the sea. Academic Press, Amsterdam.
Payne, J. L., Lehrmann, D. J., Wei, J. Y., Orchard, M. J., Schrag, D. P., and Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506509.
Payne, J. L., Summers, M., Rego, B. L., Altiner, D., Wei, J., Yu, M., and Lehrmann, D. J. 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiology 37:409425.
Payne, J. L., Groves, J. R., Jost, A. B., Nguyen, T., Moffitt, S. E., Hill, T. M., and Skotheim, J. M. 2012. Late Paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution (in press). doi: 10.1111/j.1558–5646.2012.01626.x.
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, New York.
Pronina, G. P. 1988. The Late Permian smaller foraminifers of Transcaucasus. Revue de Paleobiologie Special Volume 2:8996.
Pronina-Nestell, G. P., and Nestell, M. K. 2001. Late Changhsingian foraminifers of the northwestern Caucasus. Micropaleontology 47:205234.
R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/.
Rettori, R. 1995. Foraminiferi del Trias inferiore e medio della Tetide: revisione tassonomica, stratigrafia ed interpretazione filogenetica. Publications du départment de géologie et paléontologie, Université de Genève 18:1149.
Roy, K., Jablonski, D., and Martien, K. K. 2000. Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. Proceedings of the National Academy of Sciences USA 97:1315013155.
Salaj, J., Borza, K., and Samuel, O. 1983. Triassic foraminifers of the west Carpathians. Geologický ústav Dionýza Štúra, Bratislava.
Schell, W. W., and Clark, D. L. 1960. Lower Triassic foraminifera from Nevada. Micropaleontology 6:291296.
Schmidt, D. N., Thierstein, H. R., Bollmann, J., and Schiebel, R. 2004. Abiotic forcing of plankton evolution in the Cenozoic. Science 303:207210.
Schmidt-Nielsen, K. 1984. Scaling: why is animal size so important. Cambridge University Press, New York.
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., and Blackburn, T. J. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38:387390.
Schroeder, M. L. 1968. Lower Triassic foraminifera from the Thaynes Formation in southeastern Idaho and western Wyoming. Micropaleontology 14:7382.
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W. U., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M. T., and Willumsen, P. S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:12141218.
Sebens, K. P. 2002. Energetic constraints, size gradients, and size limits in benthic marine invertebrates. Integrative and Comparative Biology 42:853861.
Sepkoski, J. J. Jr., 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.
Sheehan, P. M. 2001. The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences 29:331364.
Smith, A. B., and Jeffery, C. H. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:6971.
Solé, R. V., Montoya, J. M., and Erwin, D. H. 2002. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Philosophical Transactions of the Royal Society of London B 357:697707.
Song, H.-J., Tong, J.-N., Zhang, K.-X., Wang, Q.-X., and Chen, Z. Q. 2007. Foraminiferal survivors from the Permian-Triassic mass extinction in the Meishan section, South China. Palaeoworld 16:105119.
Song, H., Tong, J., Chen, Z. Q., Yang, H. A. O., and Wang, Y. 2009. End-Permian mass extinction of foraminifers in the Nanpanjiang Basin, south China. Journal of Paleontology 83:718738.
Song, H., Tong, J., and Chen, Z. Q. 2011. Evolutionary dynamics of the Permian-Triassic foraminifer size: evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology 308:98110.
Souaya, F. J. 1976. Foraminifera of Sun-Gulf-Global Linckens Island Well P-46, Arctic Archipelago, Canada. Micropaleontology 22:249306.
Stanley, S. M. 1973. An explanation for Cope's Rule. Evolution 27:126.
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.
Stanley, S. M., and Yang, X. 1994. A double mass extinction at the end of the Paleozoic Era. Science 266:13401344.
Thompson, D. A. W. 1942. On growth and form. University Press, Cambridge, United Kingdom.
Twitchett, R. J. 2001. Incompleteness of the Permian-Triassic fossil record: a consequence of productivity decline? Geological Journal 36:341353.
Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 252:132144.
Unal, E., Altiner, D., Yilmaz, I. O., and Ozkan-Altiner, S. 2003. Cyclic sedimentation across the Permian-Triassic boundary (Central Taurides, Turkey). Rivista Italiana di Paleontologia e Stratigrafia 109:359376.
van de Schootbrugge, B., Payne, J. L., Tomasovych, A., Pross, J., Fiebig, J., Benbrahim, M., Föllmi, K. B., and Quan, T. M. 2008. Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event. Geochemistry, Geophysics, Geosystems 9:Q04028, doi: 10.1029/2007GC001914.
Végh-Neubrandt, E. 1982. Triassische Megalodontaceae. Akadémiai Kiadó, Budapest.
Vuks, V. J. 2007. Olenekian (Early Triassic) foraminifers of the Gorny Mangyshlak, eastern Precaucasus and western Caucasus. Palaeogeography, Palaeoclimatology, Palaeoecology 252:8292.
Wegman, E. J. 1990. Hyperdimensional data analysis using parallel coordinates. Journal of the American Statistical Association 85:664675.
Wignall, P. B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews 53:133.
Wignall, P. B., and Hallam, A. 1992. Anoxia as a cause of the Permian Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 93:2146.
Wignall, P. B., and Hallam, A. 1993. Griesbachian (Earliest Triassic) paleoenvironmental changes in the Salt Range, Pakistan and southeast China and their bearing on the Permo-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 102:215237.
Wignall, P. B., and Twitchett, R. J. 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event. InKoeberl, C. and MacLeod, K. G., eds. Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356:395413.
Williford, K. H., Ward, P. D., Garrison, G. H., and Buick, R. 2007. An extended organic carbon-isotope record across the Triassic-Jurassic boundary in the Queen Charlotte Islands, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 244:290296.
Xie, S., Pancost, R. D., Huang, J., Wignall, P. B., Yu, J., Tang, X., Chen, L., Huang, X., and Lai, X. 2007. Change in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology 35:10831086.
Zaninetti, L. 1976. Les foraminifères du Trias: essai de synthèse et corrélation entre les domaines mésogéens européen et asiatique. Rivista Italiana di Paleontologia 82:1258.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed