Skip to main content Accessibility help
×
Home

Size variations in foraminifers from the early Permian to the Late Triassic: implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions

  • Yan Feng (a1), Haijun Song (a1) and David P. G. Bond (a2)

Abstract

The final 10 Myr of the Paleozoic saw two of the biggest biological crises in Earth history: the middlePermian extinction (often termed the Guadalupian–Lopingian extinction [GLE]) that was followed 7–8 Myr later by Earth's most catastrophic loss of diversity, the Permian–Triassic mass extinction (PTME). These crises are not only manifest as sharp decreases in biodiversity and—particularly for the PTME—total ecosystem collapse, but they also drove major changes in biological morphological characteristics such as the Lilliput effect. The evolution of test size among different clades of foraminifera during these two extinction events has been less studied. We analyzed a global database of foraminiferal test size (volume) including 20,226 specimens in 464 genera, 98 families, and 9 suborders from 632 publications. Our analyses reveal significant reductions in foraminiferal mean test size across the Guadalupian/Lopingian boundary (GLB) and the Permian/Triassic boundary (PTB), from 8.89 to 7.60 log10 μm3 (lg μm3) and from 7.25 to 5.82 lg μm3, respectively. The decline in test size across the GLB is a function of preferential extinction of genera exhibiting gigantism such as fusulinoidean fusulinids. Other clades show little change in size across the GLB. In contrast, all Lopingian suborders in our analysis (Fusulinina, Lagenina, Miliolina, and Textulariina) experienced a significant decrease in test size across the PTB, mainly due to size-biased extinction and within-lineage change. The PTME was clearly a major catastrophe that affected many groups simultaneously, and the GLE was more selective, perhaps hinting at a subtler, less extreme driver than the later PTME.

Copyright

Corresponding author

*Corresponding author.

Footnotes

Hide All

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.h70rxwdgh

Footnotes

References

Hide All
Aberhan, M., Weidemeyer, S., Kiessling, W., Scasso, R. A., and Medina, F. A.. 2007. Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous–Paleogene boundary sections. Geology 35:227230.
Algeo, T. J., and Twitchett, R. J.. 2010. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38:10231026.
Angilletta, M. J., Steury, T. D., and Sears, M. W.. 2004. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integrative Comparative Biology 44:498509.
Armstrong, H. A., and Brasier, M. D.. 2004. Foraminifera. Microfossils 15:142187.
Atkinson, D. 1994. Temperature and organism size: a biological law for ectotherms? Advances in Ecological Research 25:158.
Atkinson, D., and Sibly, R. M.. 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology and Evolution 12:235239.
Atkinson, J. W., Wignall, P. B., Morton, J. D., and Aze, T.. 2019. Body size changes in bivalves of the family Limidae in the aftermath of the end-Triassic mass extinction: the Brobdingnag effect. Palaeontology 62:561582.
Barbault, R. 1988. Body size, ecological constraints, and the evolution of life-history strategies. Evolution Biology 22:261286.
Basov, I. 1979. Ecology of benthic foraminifera in the upwelling zone near south-west Africa. Voporsy Mikropaleontologii 22:135146.
Beerling, D. J., Harfoot, M., Lomax, B., and Pyle, J. A.. 2007. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Philosophical Transactions of the Royal Society of London A 365:18431866.
Benton, M. J. 2003. When life nearly died: the greatest mass extinction of all time. Cambridge University Press, Cambridge.
Benton, M. J., Tverdokhlebov, V. P., and Surkov, M.. 2004. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature 432:97100.
Bjørklund, K. R. 1976. Actinomma haysi, n. sp., its Holocene distribution and size variation in Atlantic Ocean sediments. Micropaleontology 23:114126.
Black, B. A., Lamarque, J. F., Shields, C. A., Elkins Tanton, L. T., and Kiehl, J. T.. 2014. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42:6770.
Blackburn, T. M., and Gaston, K. J.. 1994. Animal body size distributions: patterns, mechanisms and implications. Trends in Ecology and Evolution 9:471474.
Bond, D., Wignall, P., Wang, W., Izon, G., Jiang, H. S., Lai, X. L., Sun, Y. D., Newton, R., Shao, L. Y., and Védrine, S.. 2010a. The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of south China. Palaeogeography, Palaeoclimatology, Palaeoecology 292:282294.
Bond, D., Wignall, P., Joachimski, M., Sun, Y., Savov, I. P., Grasby, S., Beauchamp, B., and Blomeier, D.. 2015. An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification. Geological Society of America Bulletin 127:14111421.
Bond, D., Grasby, S., and Wignall, P.. 2017. Anoxia, toxic metals and acidification: volcanically-driven causes of the Middle Permian (Capitanian) mass extinction in NW Pangaea? P. 2200 In 19th EGU General Assembly, EGU2017, proceedings from the conference held 23–28 April, 2017 in Vienna, Austria.
Bond, D. P., and Grasby, S. E.. 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 478:329.
Bond, D. P., and Wignall, P. B.. 2010. Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin 122:12651279.
Bond, D. P., Wignall, P. B., and Grasby, S. E.. 2020. The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): a global crisis driven by volcanism and anoxia. Geological Society of America Bulletin 132:931942.
Bond, D. P. G., Hilton, J., Wignall, P. B., Ali, J. R., Stevens, L. G., Sun, Y., and Lai, X.. 2010b. The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth Science Reviews 102:100116.
Borths, M. R., and Ausich, W.. 2011. Ordovician–Silurian Lilliput crinoids during the end-Ordovician biotic crisis. Journal of Palaeontology 130:718.
Bottjer, D. J., Clapham, M. E., Fraiser, M. L., and Powers, C. M.. 2008. Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. GSA Today 18:410.
Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K., and Farabegoli, E.. 2012. The end-Permian mass extinction: a rapid volcanic CO2 and CH4-climatic catastrophe. Chemical Geology 322:121144.
Brayard, A., Nützel, A., Stephen, D. A., Bylund, K. G., Jenks, J., and Bucher, H.. 2010. Gastropod evidence against the Early Triassic Lilliput effect. Geology 38:147150.
Brayard, A., Meier, M., Escarguel, G., Fara, E., Nuetzel, A., Olivier, N., Bylund, K. G., Jenks, J. F., Stephen, D. A., and Hautmann, M.. 2015. Early Triassic Gulliver gastropods: spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction. Earth-Science Reviews 146:3164.
Brennecka, G. A., Herrmann, A. D., Algeo, T. J., and Anbar, A. D.. 2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences USA 108:1763117634.
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.
Calder, W. A. 1996. Size, function, and life history. Courier Corporation. Mineola, N.Y.
Cao, Y., Song, H., Algeo, T. J., Chu, D., Du, Y., Tian, L., Wang, Y., and Tong, J.. 2019. Intensified chemical weathering during the Permian–Triassic transition recorded in terrestrial and marine successions. Palaeogeography, Palaeoclimatology, Palaeoecology 519:166177.
Chen, B., Joachimski, M. M., Sun, Y., Shen, S., and Lai, X.. 2011. Carbon and conodont apatite oxygen isotope records of Guadalupian–Lopingian boundary sections: climatic or sea-level signal? Palaeogeography Palaeoclimatology Palaeoecology 311:145153.
Chen, B., Joachimski, M. M., Shen, S., Lambert, L. L., Lai, X., Wang, X., Chen, J., and Yuan, D.. 2013. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Research 24:7789.
Chen, J., Song, H., He, W., Tong, J., Wang, F., and Wu, S.. 2019. Size variation of brachiopods from the Late Permian through the Middle Triassic in south China: evidence for the Lilliput effect following the Permian–Triassic extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 519:248257.
Chu, D., Tong, J., Song, H., Benton, M. J., Song, H., Yu, J., Qiu, X., Huang, Y., and Tian, L.. 2015. Lilliput effect in freshwater ostracods during the Permian–Triassic extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 435:3852.
Clapham, M. E., Shen, S., and Bottjer, D. J.. 2009. The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35:3250.
Clarkson, M. O., Kasemann, S. A., Wood, R. A., Lenton, T. M., Daines, S. J., Richoz, S., Ohnemueller, F., Meixner, A., Poulton, S. W., and Tipper, E. T.. 2015. Ocean acidification and the Permo-Triassic mass extinction. Science 348:229232.
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J. X. 2018. The ICS international chronostratigraphic chart. https://stratigraphy.org/icschart/ChronostratChart2018-08.pdf.
Cotgreave, P. 1993. The relationship between body size and population abundance in animals. Trends in Ecology and Evolution 8:244248.
Courtillot, V. E., and Renne, P. R.. 2003. On the ages of flood basalt events. Comptes Rendus Geoscience 335:113140.
Damuth, J. 1991. Of size and abundance. Nature 351:268269.
Detian, Y., Liqin, Z., and Zhen, Q.. 2013. Carbon and sulfur isotopic fluctuations associated with the end-Guadalupian mass extinction in South China. Gondwana Research 24:12761282.
Erwin, D. H. 1993. The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York.
Erwin, D. H. 2015. Extinction: how life on Earth nearly ended 250 million years ago, Updated ed. Princeton University Press, Princeton, N.J.
Flügel, E., and Kiessling, W.. 2002. Patterns of Phanerozoic reef crises. In W. Kiessling, E. Fluegel, and J. Golonka, eds. Phanerozoic reef patterns. Society for Sedimentary Geology, Tulsa, Okla. SEPM 72:691–733.
Fraiser, M. L., and Bottjer, D. J.. 2004. The non-actualistic Early Triassic gastropod fauna: a case study of the Lower Triassic SinbadLimestone member. Palaios 19:259275.
Fraiser, M. L., Twitchett, R. J., Frederickson, J. A., Metcalfe, B., and Bottjer, D. J.. 2011. Gastropod evidence against the Early Triassic Lilliput effect: comment. Geology 39:e232.
Gingerich, P. 1983. Rates of evolution: effects of time and temporal scaling. Science 222:159162.
Gradstein, F., Ogg, J., and Smith, A.. 2004. A geologic time scale. Cambridge University Press, Cambridge.
Grice, K., Cao, C., Love, G. D., Böttcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W., and Jin, Y.. 2005. Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307:706709.
Groves, J. R., and Wang, Y.. 2013. Timing and size selectivity of the Guadalupian (Middle Permian) fusulinoidean extinction. Journal of Paleontology 87:183196.
Groves, J. R., Altiner, D., and Rettori, R.. 2005. Extinction, survival, and recovery of lagenide foraminifers in the Permian–Triassic boundary interval, central Taurides, Turkey. Journal of Palaeontology 79:139.
Hallam, A. 1965. Environmental causes of stunting in living and fossil marine benthonic invertebrates. Palaeontology 8:132155.
Hallam, A., and Wignall, P. B.. 1997. Mass extinctions and their aftermath. Oxford University, Oxford.
Hammer, Ø., Harper, D. A., and Ryan, P. D.. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:19.
Haq, B. U., and Schutter, S. R.. 2008. A chronology of Paleozoic sea-level changes. Science 322:6468.
Harries, P. J., and Knorr, P. O.. 2009. What does the “Lilliput Effect” mean? Palaeogeography, Palaeoclimatology, Palaeoecology 284:410.
Hayami, I. 1997. Size changes of bivalves and a hypothesis about the cause of mass extinction. Fossils 62:2436.
He, W., Shi, G. R., Feng, Q., Campi, M. J., Gu, S., Bu, J., Peng, Y., and Meng, Y.. 2007. Brachiopod miniaturization and its possible causes during the Permian–Triassic crisis in deep water environments, south China. Palaeogeography Palaeoclimatology Palaeoecology 252:0163.
He, W., Shi, G. R., Twitchett, R. J., Zhang, Y., Zhang, K., Song, H., Yue, M., Wu, S., Wu, H., Yang, T., and Xiao, Y.. 2015. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology 13:123138.
Hinojosa, J. L., Brown, S. T., Chen, J., DePaolo, D. J., Paytan, A., Shen, S. Z., and Payne, J. L.. 2012. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology 40:743746.
Huang, B., Harper, D. A., Zhan, R., and Rong, J.. 2010. Can the Lilliput effect be detected in the brachiopod faunas of south China following the terminal Ordovician mass extinction? Palaeogeography Palaeoclimatology Palaeoecology 285:277286.
Huang, Y., Chen, Z.-Q., Algeo, T. J., Zhao, L., Baud, A., Bhat, G. M., Zhang, L., and Guo, Z.. 2019. Two-stage marine anoxia and biotic response during the Permian–Triassic transition in Kashmir, northern India: pyrite framboid evidence. Global and Planetary Change 172:124139.
Hunt, G., and Roy, K.. 2006. Climate change, body size evolution, and Cope's rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences USA 103:13471352.
Huttenlocker, A. K. 2014. Body size reductions in nonmammalian eutheriodont therapsids (Synapsida) during the end-Permian mass extinction. PLoS ONE 9:e87553.
Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235238.
Isozaki, Y., and Aljinović, D.. 2009. End-Guadalupian extinction of the Permian gigantic bivalve Alatoconchidae: end of gigantism in tropical seas by cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 284:1121.
Isozaki, Y., Kawahata, H., Ota, A. J. G., and Change, P.. 2007. A unique carbon isotope record across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic paleo-atoll carbonates: the high-productivity “Kamura event” and its collapse in Panthalassa. Global and Planetary Change 55:2138.
Jablonski, D. 1986. Causes and consequences of mass extinctions: a comparative approach. Pp. 183229 in Elliott, D.K., ed. Dynamics of extinction. Wiley, New York.
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289 in Jablonski, D., Erwin, D., and Lipps, J., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.
Jeffery, C. H., and Emlet, R. B.. 2010. Macroevolutionary consequences of developmental mode in temnopleurid echinoids from the tertiary of southern Australia. International Journal of Organic Evolution 57:10311048.
Jin, Y., Zhang, J., and Shang, Q.. 1994. Two phases of the end-Permian mass extinction. Applied Spectroscopy:17071711.
Jin, Y., Zhang, J., and Shang, Q.. 1995. Pre-Lopingian catastrophic event of marine faunas. Acta Palaeontologica Sinica 4:410427.
Jin, Y., Wang, Y., Wang, W., Shang, Q., Cao, C., and Erwin, D.. 2000. Pattern of marine mass extinction near the Permian–Triassic boundary in south China. Science 289:432436.
Joachimski, M. M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J., and Sun, Y.. 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40:195198.
Joachimski, M., Alekseev, A., Grigoryan, A., and Gatovsky, Y. A.. 2020. Siberian Trap volcanism, global warming and the Permian–Triassic mass extinction: new insights from Armenian Permian–Triassic sections. Geological Society of America Bulletin 132:427443.
Kaljo, D. 1996. Diachronous recovery patterns in Early Silurian corals, graptolites and acritarchs. Geological Society of London Special Publication 102:127133.
Kani, T., Fukui, M., Isozaki, Y., and Nohda, S.. 2008. The Paleozoic minimum of 87Sr/86Sr ratio in the Capitanian (Permian) mid-oceanic carbonates: a critical turning point in the late Paleozoic. Journal of Asian Earth Sciences 32:2233.
Kidder, D. L., and Worsley, T. R.. 2004. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography, Palaeoclimatology, Palaeoecology 203:207237.
Kiessling, W., Kustatscher, E., Preto, N., and Wignall, P.. 2010. Reef expansion during the Triassic: spread of photosymbiosis balancing climatic cooling. Palaeogeography Palaeoclimatology Palaeoecology 290:1119.
Knoll, A. H., Bambach, R., Canfield, D. E., and Grotzinger, J. P.. 1996. Comparative Earth history and Late Permian mass extinction. Science 273:452457.
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W.. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.
Korte, C., Jasper, T., Kozur, H. W., and Veizer, J.. 2006. 87Sr/86Sr record of Permian seawater. Palaeogeography, Palaeoclimatology, Palaeoecology 240:89107.
Kump, L. R., Pavlov, A., and Arthur, M. A.. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33:397400.
Kuroyanagi, A., Kawahata, H., Suzuki, A., Fujita, K., and Irie, T.. 2009. Impacts of ocean acidification on large benthic foraminifers: Results from laboratory experiments. Marine Micropaleontology 73:190195.
Lau, K. V., Maher, K., Altiner, D., Kelley, B. M., Kump, L. R., Lehrmann, D. J., Silva-Tamayo, J. C., Weaver, K. L., Yu, M., and Payne, J. L.. 2016. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proceedings of the National Academy of Sciences USA 113:23602365.
Lewis, K., and Jenkins, C.. 1969. Geographical variation of Nonionellina flemingi. Micropaleontology 15:112.
Li, M., Song, H., Algeo, T. J., Wignall, P. B., Dai, X., and Woods, A. D.. 2018. A dolomitization event at the oceanic chemocline during the Permian–Triassic transition. Geology 46:10431046.
Liang, H. 2002. End-Permian catastrophic event of marine acidification by hydrated sulfuric acid: mineralogical evidence from Meishan Section of south China. Chinese Science Bulletin 47:13931397.
Luo, G., Lai, X., Shi, G., Jiang, H., Yin, H., Xie, S., Tong, J., Zhang, K., He, W., and Wignall, P. B.. 2008. Size variation of conodont elements of the Hindeodus–Isarcicella clade during the Permian–Triassic transition in south China and its implication for mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 264:176187.
Majorowicz, J., Grasby, S., Safanda, J., and Beauchamp, B.. 2014. Gas hydrate contribution to Late Permian global warming. Earth and Planetary Science Letters 393:243253.
McGowan, A., Smith, A., and Taylor, P.. 2009. Faunal diversity, heterogeneity and body size in the Early Triassic: testing post-extinction paradigms in the Virgin Limestone of Utah, USA. Australian Journal of Earth Sciences 56:859872.
Mikhalevich, V. 2000. The phylum Foraminifera d'Orbigny, 1826 Foraminifery. Pp. 533623 in Alimov, A. F., ed. Protisty: Rukovodstvo po Zoologii. Nauka Publishers, Moscow.
Mutter, R. J., and Neuman, A. G.. 2009. Recovery from the end-Permian extinction event: evidence from “Lilliput Listracanthus”. Palaeogeography, Palaeoclimatology, Palaeoecology 284:2228.
Ota, A., and Isozaki, Y.. 2006. Fusuline biotic turnover across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic carbonate buildups: biostratigraphy of accreted limestone in Japan. Journal of Asian Earth Sciences 26:353368.
Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269290.
Payne, J. L., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A., Lyons, S. K., McClain, C. R., McShea, D. W., and Novack-Gottshall, P. M.. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences USA 106:2427.
Payne, J. L., Summers, M., Rego, B. L., Altiner, D., Wei, J., Yu, M., and Lehrmann, D. J.. 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiology 37:409425.
Payne, J. L., Groves, J. R., Jost, A. B., Nguyen, T., Moffitt, S. E., Hill, T. M., and Skotheim, J. M.. 2012. Late Paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution: International Journal of Organic Evolution 66:29292939.
Payne, J. L., Jost, A. B., Wang, S. C., and Skotheim, J. M.. 2013. A shift in the long-term mood of foraminiferan size evolution cause by the end-Permian mass extinction. Evolution: International Journal of Organic Evolution 67:816827.
Penn, J. L., Deutsch, C., Payne, J. L., and Sperling, E. A.. 2018. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362:eaat1327.
Petchey, O. L., and Belgrano, A.. 2010. Body-size distributions and size-spectra: universal indicators of ecological status? Biology Letters 6:434437.
Peters, P. 1983. The ecological implication of body size. Cambridge University Press, Cambridge.
Posenato, R. 2009. Survival patterns of macrobenthic marine assemblages during the end-Permian mass extinction in the western Tethys (Dolomites, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 280:150167.
Racki, G., and Wignall, P. B.. 2005. Late Permian double-phased mass extinction and volcanism: an oceanographic perspective. Developments in Palaeontology and Stratigraphy 20:263297.
Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology 1:333342.
Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217218.
Rego, B. L., Wang, S. C., Altiner, D., and Payne, J. L.. 2012. Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of Late Permian through Late Triassic foraminifera. Paleobiology 38:627643.
Reichow, M. K., Pringle, M., Al'Mukhamedov, A., Allen, M., Andreichev, V., Buslov, M., Davies, C., Fedoseev, G., Fitton, J., and Inger, S.. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters 277:920.
Renaud, S., and Girard, C.. 1999. Strategies of survival during extreme environmental perturbations: evolution of conodonts in response to the Kellwasser crisis (Upper Devonian). Palaeogeography Palaeoclimatology Palaeoecology 146:1932.
Renne, P. R., Black, M. T., Zichao, Z., Richards, M. A., and Basu, A. R.. 1995. Synchrony and causal relations between Permian–Triassic boundary crises and Siberian flood volcanism. Science 269:14131416.
Retallack, G. J. 2002. Lepidopteris callipteroides, an earliest Triassic seed fern of the Sydney Basin, southeastern Australia. Alcheringa 26:475500.
Retallack, G. J. 2005. Permian greenhouse crises. The nonmarine Permian. New Mexico Museum of Natural History Science Bulletin 30:256269.
Rhoads, D. C., and Morse, J. W.. 1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia 4:413428.
Romano, C., Goudemand, N., Vennemann, T. W., Ware, D., Schneebelihermann, E., Hochuli, P. A., Brühwiler, T., Brinkmann, W., and Bucher, H.. 2013. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience 6:5760.
Ross, C. A. 1972. Paleobiological analysis of fusulinacean (Foraminiferida) shell morphology. Journal of Paleontology:719728.
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. American Naturalist 102:243282.
Sanei, H., Grasby, S. E., and Beauchamp, B.. 2012. Latest Permian mercury anomalies. Geology 40:6366.
Schaal, E. K., Clapham, M. E., Rego, B. L., Wang, S. C., and Payne, J. L.. 2016. Comparative size evolution of marine clades from the Late Permian through Middle Triassic. Paleobiology 42:127142.
Schmidt, D. N., Thierstein, H. R., and Bollmann, J.. 2004. The evolutionary history of size variation of planktic foraminiferal assemblages in the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 212:159180.
Schmidt, D. N., Lazarus, D., Young, J. R., and Kucera, M.. 2006. Biogeography and evolution of body size in marine plankton. Earth-Science Reviews 78:239266.
Schmidt-Nielsen, K. 1984. Scaling, why is animal size so important? Cambridge University Press, Cambridge
Schubert, J. K., and Bottjer, D. J.. 1995. Aftermath of the Permian–Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 116:139.
Sephton, M. A., Jiao, D., Engel, M. H., Looy, C. V., and Visscher, H.. 2015. Terrestrial acidification during the end-Permian biosphere crisis? Geology 43:159162.
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W.. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.
Shen, S. Z., and Shi, G.. 2009. Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis. Palaeoworld 18:152161.
Shen, W., Lin, Y., Xu, L., Li, J., Wu, Y., and Sun, Y.. 2007. Pyrite framboids in the Permian–Triassic boundary section at Meishan, China: evidence for dysoxic deposition. Palaeogeography, Palaeoclimatology, Palaeoecology 253:323331.
Sigurdsen, A., and Hammer, O.. 2016. Body size trends in the Ordovician to earliest Silurian of the Oslo Region. Palaeogeography, Palaeoclimatology, Palaeoecology 443:4956.
Smith, F. A., Betancourt, J. L., and Brown, J. H.. 1995. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270:20122014.
Song, H., and Tong, J.. 2010. Size variation of foraminifers during the Permian–Triassic transition at Meishan Section, south China. Journal of Earth Science 21:154157.
Song, H., Tong, J., and Chen, Z.. 2011. Evolutionary dynamics of the Permian–Triassic foraminifer size: evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology 308:98110.
Song, H., Wignall, P. B., Tong, J., Bond, D. P., Song, H., Lai, X., Zhang, K., Wang, H., and Chen, Y.. 2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters 353:1221.
Song, H., Wignall, P. B., Tong, J., and Yin, H.. 2013. Two pulses of extinction during the Permian–Triassic crisis. Nature Geoscience 6:52.
Song, H., Wignall, P. B., and Dunhill, A. M.. 2018. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Science Advances 4:5091.
Song, H., Wignall, P. B., Song, H., Dai, X., and Chu, D.. 2019. Seawater temperature and dissolved oxygen over the past 500 million years. Journal of Earth Science 30:236243.
Song, H., Huang, S., Jia, E., Dai, X., Wignall, P. B., and Dunhill, A. M.. 2020. Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction. Proceedings of the National Academy of Sciences USA 117:1757817583.
Stanley, S. M., and Yang, X.. 1994. A double mass extinction at the end of the Paleozoic Era. Science 266:13401344.
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X.. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366370.
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T. R., and Rey, S. S.. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542545.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y., and Jamtveit, B. J. E.. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters 277:490500.
Tappan, H., and Loeblich, A. R. Jr. 1988. Foraminiferal evolution, diversification, and extinction. Journal of Palaeontology 62:695714.
Tian, L., Tong, J., Algeo, T. J., Song, H., Song, H., Chu, D., Lei, S., and Bottjer, D. J.. 2014. Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, south China. Palaeogeography, Palaeoclimatology, Palaeoecology 412:6879.
Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 252:132144.
Twitchett, R. J., Feinberg, J. M., O'Connor, D. D., Alvarez, W., and McCollum, L. B.. 2005. Early Triassic ophiuroids: their paleoecology, taphonomy, and distribution. Palaios 20:213223.
Urbanek, A. 1993. Biotic crises in the history of Upper Silurian graptoloids: a palaeobiological model. Historical Biology 7:2950.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhm, F., Carden, G., Diener, A., Ebneth, S., and Godderis, Y.. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161:5988.
Visscher, H., Looy, C. V., Collinson, M. E., Brinkhuis, H., Van Konijnenburg-Van Cittert, J. H., Kürschner, W. M., and Sephton, M. A.. 2004. Environmental mutagenesis during the end-Permian ecological crisis. Proceedings of the National Academy of Sciences USA 101:1295212956.
Wang, C. 2007. Anomalous hopane distributions at the Permian–Triassic boundary, Meishan, China—evidence for the end-Permian marine ecosystem collapse. Organic Geochemistry 38:5266.
Wang, X. D., and Sugiyama, T.. 2000. Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33:285294.
Wignall, P., and Hallam, A.. 1992. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 93:2146.
Wignall, P. B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews 53:133.
Wignall, P. B., and Twitchett, R. J.. 1996. Oceanic anoxia and the end Permian mass extinction. Science 272:11551158.
Wignall, P. B., and Twitchett, R. J.. 2002. Extent, duration, and nature of the Permian–Triassic superanoxic event. Geological Society of America Special Paper 356:395414.
Wignall, P. B., Sun, Y., Bond, D. P., Izon, G., Newton, R. J., Védrine, S., Widdowson, M., Ali, J. R., Lai, X., and Jiang, H.. 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science 324:11791182.
Wignall, P. B., Bond, D. P., Kuwahara, K., Kakuwa, Y., Newton, R. J., and Poulton, S. W.. 2010. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Global and Planetary Change 71:109123.
Yang, X., Jiarun, L., and Guijun, S.. 2004. Extinction process and patterns of Middle Permian fusulinaceans in southwest China. Lethaia 37:139147.
Yin, H., and Song, H.. 2013. Mass extinction and Pangea integration during the Paleozoic–Mesozoic transition. Science China Earth Sciences 56:17911803.
Zhang, F., Algeo, T. J., Romaniello, S. J., Cui, Y., Zhao, L., Chen, Z.-Q., and Anbar, A. D.. 2018. Congruent Permian–Triassic δ238U records at Panthalassic and Tethyan sites: confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy. Geology 46:327330.
Zhang, Y., and Payne, J. L.. 2012. Size-frequency distributions along a latitudinal gradient in Middle Permian fusulinoideans. PLoS ONE 7:38603.
Zhang, Y., Shi, G., He, W. H., Wu, H. T., Lei, Y., Zhang, K. X., Du, C. C., Yang, T. L., Yue, M. L., and Xiao, Y. F.. 2016. Significant pre-mass extinction animal body-size changes: evidences from the Permian–Triassic boundary brachiopod faunas of south China. Palaeogeography, Palaeoclimatology, Palaeoecology 448:8595.
Zhang, Z., Augustin, M., and Payne, J. L.. 2015. Phanerozoic trends in brachiopod body size from synoptic data. Paleobiology 41:491501.

Size variations in foraminifers from the early Permian to the Late Triassic: implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions

  • Yan Feng (a1), Haijun Song (a1) and David P. G. Bond (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.