Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T08:42:38.691Z Has data issue: false hasContentIssue false

Shell morphology and suture complexity in Upper Carboniferous ammonoids

Published online by Cambridge University Press:  14 July 2015

W. Bruce Saunders
Affiliation:
Department of Geology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, Department of Geology, University of Iowa, Iowa City, Iowa 52242
David M. Work
Affiliation:
Department of Geology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, Department of Geology, University of Iowa, Iowa City, Iowa 52242

Abstract

Principal components analysis of Upper Carboniferous (Pennsylvanian) ammonoids (all 117 genera), using 21 variables to measure shell geometry, sculpture and suture complexity, shows that following a sharp decline (∼30%) in generic diversity after the mid-Carboniferous boundary, seven morphotypes persisted throughout the Pennsylvanian (ca. 30 m.y.). Six of these were polyphyletically adopted at different times, while the seventh was monopolized by the prolecanitids, a group whose evolution accelerated during the Pennsylvanian and later gave rise to Mesozoic ammonoids. Innovations in suture geometry distinguished at least 17 of 39 (44%) Pennsylvanian ammonoid families. Average suture complexity increased almost threefold; this was achieved by various methods (lobe serration, insertion of umbilical elements, prong subdivision, lobe trifurcation, and secondary bifurcation), which were recurrent and crossed morphotype boundaries. The Pennsylvanian record supports suggestions that Paleozoic ammonoids were confined to a certain suite of basic shell geometries, showing preference for a limited number of sites in the spectrum of available morphospace. However, these morphic constraints did not, with one possible exception (the prolecanitids), control the emergence of increasing sutural complexity during the Pennsylvanian, which occurred among different lineages in all seven morphotypes.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arkell, W. J., Kummel, B., and Wright, C. W. 1957. Mesozoic Ammonoidea. Pp. L80L465In Arkell, W. J., Furnish, W. M., Kummel, B., Miller, A. K., Moore, R. C., Schindewolf, C. H., Sylvester-Bradley, P. C., and Wright, C. W., eds. Mollusca 4, Cephalopoda, Ammonoidea. Part L of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas Press, Lawrence, Kans.Google Scholar
Beghtel, F. W. 1962. Desmoinesian ammonoids of Oklahoma. Ph.D. dissertation. University of Iowa, Iowa City.Google Scholar
Bisat, W. S. 1932. On some lower Sabdenian goniatites. Transactions of the Leeds Geological Association 5:2736.Google Scholar
Boardman, D. R. II, Mapes, R. H., Yancey, T. E., and Malinky, J. M. 1984. A new model for the depth-related allogenic community succession within North American Pennsylvanian cyclothems and implications on the black shale problem. In Hyne, N., ed. Limestones of the Midcontinent. Tulsa Geological Society Special Publication 2:141182.Google Scholar
Boardman, D. R. II, Mapes, R. H., and Work, D. M. 1989a. Early Missourian ammonoids from the North American Midcontinent. In Boardman, D.R. II, Barrick, J.E., Cocke, J.M., and Nestell, M., eds. Late Pennsylvanian chronostratigraphic boundaries in north-central Texas—glacial-eustatic events, biostratigraphy, and paleoecology; a guidebook with contributed papers, Part II, Contributed papers. Texas Tech University Studies in Geology 2:151166. Geological Society of America, Boulder, Colo.Google Scholar
Boardman, D. R. II, Mapes, R. H., and Work, D. M. 1989b. Ammonoids from the Colony Creek Shale (Caddo Creek Formation, Canyon Group) with implications for correlation of the position of the Missourian-Virgilian boundary in north-central Texas. In Boardman, D. R. II, Barrick, J. E., Cocke, J. M., and Nestell, M., eds. Late Pennsylvanian chronostratigraphic boundaries in north-central Texas—glacialeustatic events, biostratigraphy, and paleoecology; a guidebook with contributed papers, Part II, Contributed papers. Texas Tech University Studies in Geology 2:201220. Geological Society of America, Boulder, Colo.Google Scholar
Boardman, D. R. II, Work, D. M., Mapes, R. H., and Barrick, J. E. 1994a. Biostratigraphy of Middle and Late Pennsylvanian (Desmoinesian-Virgilian) ammonoids. Kansas Geological Survey Bulletin 232.Google Scholar
Boardman, D. R. II, Work, D. M., Mapes, R. H., and Barrick, J. E. 1994b. Revision of the family Shumarditidae Plummer and Scott, 1937. In Boardman, D. R., II, Work, D. M., Mapes, R. H., and Barrick, J. E.Biostratigraphy of Middle and Late Pennsylvanian (Desmoinesian-Virgilian) ammonoids. Kansas Geological Survey Bulletin 232:4856.Google Scholar
Bogoslovskaya, M. F., Leonova, T. B., and Shkolin, A. A. 1995. The Carboniferous-Permian boundary and ammonoids from the Aidaralash section, Southern Urals. Journal of Paleontology 69:288301.CrossRefGoogle Scholar
Boyajian, G., and Lutz, T. 1992. Evolution of biological complexity and its relation to taxonomic longevity. Geology 20:983986.2.3.CO;2>CrossRefGoogle Scholar
Chamberlain, J. A. Jr. 1981. Hydromechanical design of fossil cephalopods. pp. 289336In House, M. R. and Senior, J. R., eds. The Ammonoidea. Academic Press, London.Google Scholar
Chuvashov, B. I., Djupina, G. V., Mizens, G. A., and Chernykh, V. V. 1993. Krasnousolsk Section. In Chuvashov, B.I. and Nairn, A.E.M., eds. Permian System: guides to geological excursions in the Uralian type localities. Earth Sciences and Resources Institute Occasional Publication 10:4571. University of South Carolina, Columbia.Google Scholar
Davidov, V. I., Barskov, I. S., Bogoslovskaya, M. F., Leven, E. Y., Popov, A. V., Akhmetshina, L. Z., and Kozitskaya, R. I. 1992. The Carboniferous-Permian boundary in the former USSR and its correlation. International Geology Review 34:889906.CrossRefGoogle Scholar
Ebel, K. 1985. Gehäusespirale und Septumform bei Ammoniten unter Annahme vagil benthonischer Lebensweise. Paläontologische Zeitschrift 59:109123.CrossRefGoogle Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.CrossRefGoogle Scholar
Frest, T. J., Glenister, B. F., and Furnish, W. M. 1981. Pennsylvanian-Permian cheiloceratacean ammonoid families Maximitidae and Pseudohaloritidae. Paleontological Society Memoir 11:146. (Journal of Paleontology 55:supplement.)Google Scholar
Furnish, W. M., and Beghtel, F. W. 1961. A new Desmoinesian ammonoid genus from Oklahoma. Oklahoma Geology Notes 21:289293.Google Scholar
Furnish, W. M., and Glenister, B. F. 1971. Permian Gonioloboceratidae (Ammonoidea). In Dutro, J. T. Jr., ed. Paleozoic perspectives: a paleontological tribute to G. Arthur Cooper. Smithsonian Contributions to Paleobiology 3.Google Scholar
Furnish, W. M., and Knapp, W. D. 1966. Lower Pennsylvanian fauna from eastern Kentucky, Part I, Ammonoids. Journal of Paleontology 40:296308.Google Scholar
Furnish, W. M., and Spinosa, C. 1966. Historic Pennsylvanian ammonoids from Iowa. Transactions of the Iowa Academy of Sciences 73:253259.Google Scholar
Gordon, M. Jr. 1965[1966]. Carboniferous cephalopods of Arkansas. U.S. Geological Survey Professional Paper 460:1322.Google Scholar
Gordon, M. Jr. 1969a. An early Reticuloceras Zone fauna from the Hale Formation in northwestern Arkansas. U.S. Geological Survey Professional Paper 613-A:121.CrossRefGoogle Scholar
Gordon, M. Jr. 1969b. Early Pennsylvanian ammonoids from southern Nevada. U.S. Geological Survey Professional Paper 613-C:113.CrossRefGoogle Scholar
Gould, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology 62:319329.CrossRefGoogle Scholar
Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G., and Walters, R. 1982. A geologic time scale. Cambridge University Press, London, New York.Google Scholar
Hewitt, R. A., and Westermann, G. E. G. 1986. Function of complexly fluted septa in ammonoid shells I. Mechanical principles and functional models. Neues Jahrbuch für Geologie und Paläontologie 172:4769.CrossRefGoogle Scholar
Hewitt, R. A., and Westermann, G. E. G. 1987. Function of complexly fluted septa in ammonoid shells II. Septal evolution and conclusions. Neues Jahrbuch für Geologie und Paläontologie 174:135169.Google Scholar
Jacobs, D. K. 1990. Sutural pattern and shell stress in Baculites with implications for other cephalopod shell morphologies. Paleobiology 16:336348.CrossRefGoogle Scholar
Kaiser, H. F. 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement 20:141151.CrossRefGoogle Scholar
Kammer, T. W., Brett, C. E., Boardman, D. R. II, and Mapes, R. H. 1986. Ecologic stability of the dysaerobic biofacies during the Late Paleozoic. Lethaia 19:109121.CrossRefGoogle Scholar
Kulicki, C., and Mutvei, H. 1988. Functional interpretation of ammonoid septa. pp. 713718. In Weidmann, J. and Kullmann, J., eds. Cephalopods, present and past. Schweizerbart, Stuttgart, Germany.Google Scholar
Manger, W. L., and Quinn, J. H. 1972. Carboniferous dimorphoceratid ammonoids from northern Arkansas. Journal of Paleontology 46:303314.Google Scholar
Manger, W. L., and Saunders, W. B. 1980. Lower Pennsylvanian (Morrowan) ammonoids from the North American Midcontinent. Paleontological Society Memoir 10:156 (Journal of Paleontology 54:supplement.)Google Scholar
Manger, W. L., and Saunders, W. B. 1982. An ammonoid-based Middle Carboniferous boundary. pp. 95100. In Ramsbottom, W. H. C., Saunders, W. B., and Owens, B., eds. Biostratigraphic data for a mid-Carboniferous boundary. I. U. G. S.. Subcommission on Carboniferous Stratigraphy. University of Leeds, Leeds, England.Google Scholar
Mapes, R. H., and Furnish, W. M. 1981. The Pennsylvanian ammonoid family Welleritidae. Journal of Paleontology 55:317330.Google Scholar
McCaleb, J. A. 1963. The goniatite fauna from the Pennsylvanian Winslow Formation of northwest Arkansas. Journal of Paleontology 37:867888.Google Scholar
McCaleb, J. A. 1968. Lower Pennsylvanian ammonoids from the Bloyd Formation of Arkansas and Oklahoma. Geological Society of America Special Paper 96:1123.CrossRefGoogle Scholar
McShea, D. W. 1991. Complexity and evolution: what everybody knows. Biology and Philosophy 6:303324.CrossRefGoogle Scholar
McShea, D. W. 1992. A metric for the study of evolutionary trends in the complexity of serial structures. Biological Journal of the Linnean Society. 45:3955.CrossRefGoogle Scholar
McShea, D. W. 1993. Evolutionary change in the morphological complexity of the mammalian vertebral column. Evolution 47:730740.CrossRefGoogle ScholarPubMed
Miller, A. K., and Cline, L. M. 1934. The cephalopod fauna of the Pennsylvanian Nellie Bly Formation of Oklahoma. Journal of Paleontology 8:171185.Google Scholar
Miller, A. K., and Downs, H. R. 1950. Ammonoids of the Pennsylvanian Finis Shale of Texas. Journal of Paleontology 24:185218.Google Scholar
Miller, A. K., and Furnish, W. M. 1940a. Permian ammonoids of the Guadalupe Mountain region and adjacent areas. Geological Society of America Special Paper 26:1242.CrossRefGoogle Scholar
Miller, A. K., and Furnish, W. M. 1940b. Studies of Carboniferous ammonoids, Parts 5-7. Journal of Paleontology 14:521543.Google Scholar
Miller, A. K., and Furnish, W. M. 1958. Middle Pennsylvanian Schistoceratidae (Ammonoidea). Journal of Paleontology 32:253268.Google Scholar
Miller, A. K., and Owen, J. B. 1937. A new Pennsylvanian cephalopod fauna from Oklahoma. Journal of Paleontology 11:403422.Google Scholar
Miller, A. K., and Owen, J. B. 1939. An ammonoid fauna from the Lower Pennsylvanian Cherokee Formation of Missouri. Journal of Paleontology 13:141162.Google Scholar
Miller, A. K., and Unklesbay, A. G. 1942. The cephalopod fauna of the Conemaugh Series in western Pennsylvania. Carnegie Museum Annals 29:127174.CrossRefGoogle Scholar
Miller, A. K., Furnish, W. M., and Schindewolf, O. H. 1957. Paleozoic Ammonoidea. Pp. L11L79In Arkell, W. J., Furnish, W. M., Kummel, B., Miller, A. K., Moore, R. C., Schindewolf, C. H., Sylvester-Bradley, P. C., and Wright, C. W., eds. Mollusca 4, Cephalopoda, Ammonoidea. Part L of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas Press, Lawrence, Kans.Google Scholar
Nassichuk, W. W. 1967. A morphologic character new to ammonoids portrayed by Clistoceras gen. nov. from the Pennsylvanian of Arctic Canada. Journal of Paleontology 41:237242.Google Scholar
Nassichuk, W. W. 1975. Carboniferous ammonoids and stratigraphy in the Canadian Arctic Archipelago. Geological Survey of Canada Bulletin 237:1240.Google Scholar
Nassichuk, W. W., and Davies, G. R. 1992. Upper Paleozoic reefs and their biota in the Canadian Arctic Archipelago. In Sutherland, P. K. and Manger, W. L., eds. Recent advances in Middle Carboniferous biostratigraphy—a symposium. Oklahoma Geological Survey Circular 94:171181.Google Scholar
Nassichuk, W. W., and Furnish, W. M. 1965. Christioceras, a new Pennsylvanian ammonoid from the Canadian Arctic. Journal of Paleontology 39:724728.Google Scholar
Nikolaeva, S. N., and Barskov, I. S. 1994. Morphogenetic trends in the evolution of Carboniferous ammonoids. Neues Jarbuch für Geologic and Paläontologie, Abhandlungen 193:401418.Google Scholar
Patteisky, K. 1965. Die fauna des Westdeutschen Oberkarbons IV. Die goniatiten im Westfal des Niederrheinisch-Westfälischen Karbons. Paleontographica, Abt. A, 125:145.Google Scholar
Pfaff, E. 1911. Über Form und Bau der Ammonitensepten und ihre Beziehungen zur Suturlinei. Jahresbericht Niedersächsen geologische Vereins Hannover 4:208222.Google Scholar
Plummer, F. B., and Scott, G. 1937. Upper Paleozoic ammonites in Texas. University of Texas Bulletin 3701, Part 1:1516.Google Scholar
Popov, Yu. N. 1960. Upper Carboniferous ammonoids of the Orulgansky Mountain Range; paleontology and biostratigraphy of the Soviet Arctic. Scientific Research Institute of Arctic Geology and Natural Resources of the USSR, Trudy 111:6290. [In Russian.]Google Scholar
Popov, Yu. N. 1970. Ammonoidea; stratigraphy of the Carboniferous and Permian deposits in the northern Verkhoyan region, Part II, Description of fauna and flora. Scientific Research Institute of Arctic Geology and Natural Resources of the USSR, Trudy 154:113140. [In Russian.]Google Scholar
Ramsbottom, W. H. C. 1970. Some British Carboniferous goniatites of the family Anthracoceratidae. Bulletin of the Geological Survey of Great Britain 32:5360.Google Scholar
Ramsbottom, W. H. C. 1977. Major cycles of transgression and regression (mesothems) in the Namurian. Proceedings of the Yorkshire Geological Society 41:261291.CrossRefGoogle Scholar
Ramsbottom, W. H. C., and Saunders, W. B. 1985. Evolution and evolutionary biostratigraphy of Carboniferous ammonoids. Journal of Paleontology 59:123139.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Raup, D. M., and Stanley, S. M. 1978. Principles of paleontology. W. H. Freeman, San Francisco.Google Scholar
Ruzhencev, V. E. 1949. Systematics and evolution of the families Pronoritidae Frech and Medlicottidae Karpinsky. Akademiya Nauk SSSR, Paleontologicheskogo Instituta, Trudy 19:1204. [In Russian.]Google Scholar
Ruzhencev, V. E. 1950. Upper Carboniferous ammonoids of the Urals. Akademiya Nauk SSSR, Paleontologicheskogo Instituta, Trudy 29:1223. [In Russian.]Google Scholar
Ruzhencev, V. E. 1957. Upper Carboniferous ammonoids of Central Asia. Akademiya Nauk SSSR, Doklady 114:889892. [In Russian.]Google Scholar
Ruzhencev, V. E. 1962. Superorder Ammonoidea. pp. 243424in Orlov, Yu. A., ed. Mollusca, Part 1, Fundamentals of paleontology, Vol. 5, Mollusca-Cephalopoda 1. Akademiya Nauk SSSR, Moscow (Israel Program for Scientific Translations, Jerusalem, 1974).Google Scholar
Ruzhencev, V. E. 1974. Late Carboniferous ammonoids of the Russian platform and Cisuralia. American Geological Institute Translation, Paleontological Journal 1974:311323.Google Scholar
Ruzhencev, V. E. 1975. Carboniferous ammonoids and chronostratigraphy of eastern Siberia. American Geological Institute Translation, Paleontological Journal 1975:155171.Google Scholar
Ruzhencev, V. E., and Bogoslovskaya, M. F. 1978. Namurian time in ammonoid evolution: late Namurian ammonoids. Akademiya Nauk SSSR, Paleontologicheskogo Instituta, Trudy 167:1336. [In Russian.]Google Scholar
Ruzhencev, V. E., and Ganelin, V. G. 1971. Middle Carboniferous index ammonoids of the Omolon Massif. American Geological Institute Translation, Paleontological Journal 1971:4556.Google Scholar
Saunders, W. B. 1971. The Somoholitidae: Mississippian to Permian Ammonoidea. Journal of Paleontology 45:100118.Google Scholar
Saunders, W. B. 1995. The ammonoid suture problem: relationships between shell- and septal thickness and suture complexity in Paleozoic ammonoids. Paleobiology 21:343355.CrossRefGoogle Scholar
Saunders, W. B., and Ramsbottom, W. H. C. 1986. The mid-Carboniferous eustatic event. Geology 14:208212.2.0.CO;2>CrossRefGoogle Scholar
Saunders, W. B., and Shapiro, E. A. 1986. Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:6479.CrossRefGoogle Scholar
Saunders, W. B., and Swan, A. R. H. 1984. Morphology and morphologic diversity of mid-Carboniferous ammonoids. Paleobiology 10:195228.CrossRefGoogle Scholar
Saunders, W. B., Manger, W. L., and Gordon, M. Jr. 1977. Upper Mississippian and Lower and Middle Pennsylvanian ammonoid biostratigraphy of northern Arkansas. In Sutherland, P. K. and Manger, W. L., eds. Mississippian-Pennsylvanian Boundary in Northeastern Oklahoma and Northwestern Arkansas. Oklahoma Geological Survey Guidebook 18:117137.Google Scholar
Saunders, W. B., Manger, W. L., and Ramsbottom, W. H. C. 1979. Donetzoceras, a mid-Carboniferous (Westphalian) index ammonoid. Journal of Paleontology 53:11361144.Google Scholar
Schmidt, H. 1925. Die carbonischen Goniatiten Deutschlands. Preussische Geologische Landesanstalt, Jahrbuch 45:489609.Google Scholar
Shigeta, Y. 1993. Post-hatching early life history of Cretaceous Ammonoidea. Lethaia 26:133146.CrossRefGoogle Scholar
Stanley, S. M. 1973. An explanation for Cope's Rule. Evolution 27:126.CrossRefGoogle ScholarPubMed
Sturgeon, M. T., Windle, D. L., Mapes, R. H., and Hoare, R. D. 1982. New and revised taxa of Pennsylvanian cephalopods in Ohio and West Virginia. Journal of Paleontology 56:14531479.Google Scholar
Swan, A. R. H. 1984. A revision of some Silesian goniatites using cluster analysis. Ph.D. dissertation. University of Leeds, Leeds, England.Google Scholar
Swan, A. R. H., and Saunders, W. B. 1987. Function and shape in Late Paleozoic (mid-Carboniferous) ammonoids. Paleobiology 13:297311.CrossRefGoogle Scholar
Trueman, A. E. 1941. The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite. Quarterly Journal of the Geological Society of London 96:339383.CrossRefGoogle Scholar
Ward, P. D. 1980. Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology 6:3243.CrossRefGoogle Scholar
Ward, P. D. 1987. The natural history of Nautilus. Allen and Unwin, London.Google Scholar
Weitschat, W., and Bandel, K. 1991. Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. Paläontologische Zeitschrift 65:269303.CrossRefGoogle Scholar
Westermann, G. E. G. 1971. Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Science Contributions of the Royal Ontario Museum 78:139.Google Scholar
Westermann, G. E. G. 1975. Model for origin, function, and fabrication of fluted cephalopods septa. Paläontologische Zeitschrift 49:235253.CrossRefGoogle Scholar