Skip to main content Accessibility help

Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal

  • Veronica Piazza (a1), Luís V. Duarte (a2), Johan Renaudie (a1) and Martin Aberhan (a1)


Reduction of body size is a common response of organisms to environmental stress. Studying the early Toarcian succession in the Lusitanian Basin of Portugal, we tested whether the shell size of benthic marine communities of bivalves and brachiopods changed at and before the global, warming–related Toarcian oceanic anoxic event (T-OAE). Statistical analyses of shell size over time show that the mean shell size of communities decreased significantly before the T-OAE. This trend is distinct in brachiopods and is caused by larger-sized species becoming less abundant over time, whereas it is not significant in bivalves, suggesting a decoupled response to environmental stress. Reductions in shell size precede the decline in standardized sample-level species richness associated with the early Toarcian extinction event. Such decreases in the shell size of marine invertebrates, well before the onset of biodiversity change, suggest that reductions in body size more generally may be a precursor of a subsequent loss of species and turnover at the community level caused by climate change. Sedimentological evidence is against hypoxia as a driver of extinction and the preceding size decrease in the brachiopod fauna in the studied succession, although low oxygen levels are widely held responsible for elevated early Toarcian extinction rates globally. Reduction of mean shell size in brachiopods but stasis in bivalves is difficult to explain with ocean acidification, because experimental work shows that brachiopods can be resilient to lowered pH, albeit long-term metabolic costs and potential evolutionary adaptations are unknown. Rising early Toarcian temperatures in the Lusitanian Basin seem to be a plausible factor in both diversity decline associated with the T-OAE and the preceding reductions in mean shell size, because thermal tolerances in modern bivalves are among the highest within marine invertebrates.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


Hide All

Data available from the Dryad Digital Repository:



Hide All
Aberhan, M., and Baumiller, T. K.. 2003. Selective extinction among Early Jurassic bivalves: a consequence of anoxia. Geology 31:10771080.
Alméras, Y. 1994. Le genre Soaresirhynchia nov. (Brachiopoda, Rhynchonellacea, Wellerellidae) dans le Toarcien du sous-bassin nord-lusitanien (Portugal). Documents Laboratoire Géologie Lyon 130:1136.
Alroy, J. 2010. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. Paleontological Society Papers 16:5580.
Baeza-Carratalá, J. F. 2013. Diversity patterns of Early Jurassic brachiopod assemblages from the westernmost Tethys (Eastern Subbetic). Palaeogeography, Palaeoclimatology, Palaeoecology 381–382:7691.
Biggs, R., Blenckner, T., Folke, C., Gordon, L., Norström, A., Nyström, M., and Peterson, G. D.. 2012. Regime shifts. Pp. 609617 in Hastings, A. and Gross, L., eds. Encyclopedia of theoretical ecology. University of California Press, Berkeley, Calif.
Bijma, J., Pörtner, H.-O., Yesson, C., and Rogers, A. D.. 2013. Climate change and the oceans—What does the future hold? Marine Pollution Bulletin 74:495505.
Boulila, S., Galbrun, B., Huret, E., Hinnov, L. A., Rouget, I., Gardin, S., and Bartolini, A.. 2014. Astronomical calibration of the Toarcian Stage: implications for sequence stratigraphy and duration of the early Toarcian OAE. Earth and Planetary Science Letters 386:98111.
Box, G. E. P., and Pierce, D. A.. 1970. Distribution of residual correlations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association 65:15091526.
Breitburg, D., Levine, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.. 2018. Declining oxygen in the global ocean and coastal waters. Science 359:eaam7240.
Burnham, K. P., and Anderson, D. R.. 2003. Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin.
Byrne, M., and Przeslawski, R.. 2013. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integrative and Comparative Biology 53:582596.
Calosi, P., Putnam, H. M., Twitchett, R. J., and Vermandele, F.. 2019. Marine metazoan modern mass extinction: improving predictions by integrating fossil, modern, and physiological data. Annual Review of Marine Science 11:20.120.22.
Clark, M. S., Sommer, U., Sihra, J. K., Thorne, M. A. S., Morley, S. A., King, M., Viant, M. R., and Peck, L. S.. 2017. Biodiversity in marine invertebrate responses to acute warming revealed by a comparative multi-omics approach. Global Change Biology 23:318330.
Comas-Rengifo, M. J., Duarte, L. V., García Joral, F., and Goy, A.. 2013. The brachiopod record in the Lower Toarcian (Jurassic) of the Rabaçal–Condeixa region (Portugal): stratigraphic distribution and palaeobiogeography. Comunicações Geológicas 100:3742.
Comas-Rengifo, M. J., Duarte, L. V., Félix, F. F., García Joral, F., Goy, A., and Rocha, R. B.. 2015. Latest Pliensbachian–Early Toarcian brachiopod assemblages from the Peniche section (Portugal) and their correlation. Episodes 38:27.
Correia, V. F., Riding, J. B., Duarte, L. V., Fernandes, P., and Pereira, Z.. 2018. The Early Jurassic palynostratigraphy of the Lusitanian Basin, western Portugal. Geobios 51:537557
Cross, E. L., Peck, L. S., and Harper, E. M.. 2015. Ocean acidification does not impact shell growth or repair of the Antarctic brachiopod Liothyrella uva (Broderip, 1833). Journal of Experimental Marine Biology and Ecology 462:2935.
Cross, E. L., Peck, L. S., Lamare, M. D., and Harper, E. M.. 2016. No ocean acidification effects on shell growth and repair in the New Zealand brachiopod Calloria inconspicua (Sowerby, 1846). ICES Journal of Marine Science 73:920926.
Cross, E. L., Harper, E. M., and Peck, L. S.. 2018. A 120-year record of resilience to environmental change in brachiopods. Global Change Biology 24:22622271.
Danise, S., Twitchett, R. J., and Little, C. T. S.. 2015. Environmental controls on Jurassic marine ecosystems during global warming. Geology 43:263266.
Daufresne, M., Lengfellner, K., and Sommer, U.. 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences USA 106:1278812793.
Day, P. B., Stuart-Smith, R. D., Edgar, G. J., and Bates, A. E.. 2018. Species’ thermal ranges predict changes in reef fish community structure during 8 years of extreme temperature variation. Diversity and Distributions 24:10361046.
Dera, G., and Donnadieu, Y.. 2012. Modeling evidence for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27:PA2211.
Dera, G., Pucéat, E., Pellenard, P., Neige, P., Delsate, D., Joachimski, M. M., Reisberg, L., and Martinez, M.. 2009. Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: evidence from neodymium and oxygen isotopes of fish teeth and belemnites. Earth and Planetary Science Letters 286:198207.
Diaz, R. J., and Rosenberg, R.. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926929.
Duarte, L. V. 1997. Facies analysis and sequential evolution of the Toarcian–Lower Aalenian series in the Lusitanian Basin (Portugal). Communicações do Instituto Geológico e Mineiro 83:6594.
Duarte, L. V. 2007. Lithostratigraphy, sequence stratigraphy and depositional setting of the Pliensbachian and Toarcian series in the Lusitanian Basin, Portugal. Pp. 1723 in Rocha, R. B., ed. The Peniche section (Portugal). Contributions to the definition of the Toarcian GSSP. International Subcommission on Jurassic Stratigraphy, Lisbon.
Duarte, L. V., and Soares, A. F.. 2002. Litostratigrafia das séries margo-calcárias do Jurássico inferior da Bacia Lusitânica (Portugal). Comunicacões do Instituto Geoloógico e Mineiro 89:135154.
Duarte, L. V., Rodrigues, R., Oliveira, L. C., and Silva, F.. 2005. Avaliação preliminar das variações do carbono orgânico total nos sedimentos margosos do Jurássico inferior da Bacia Lusitânica (Portugal). In XIV Semana de Geoquímica and VIII Congresso de Geoquímica dos Países de Lingua Portuguesa 1:39–43. Aveiro, Portugal.
Duarte, L. V., Oliveira, L. C., and Rodrigues, R.. 2007. Carbon isotopes as a sequence stratigraphic tool: examples from the Lower to Middle Toarcian marly limestones of Portugal. Boletín Geológico y Minero 118:318.
Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.. 2008. Impacts of ocean acidification on marine fauna and ecosystem Processes. ICES Journal of Marine Science 65:414432.
Ferreira, J., Mattioli, E., Pittet, B., Cachão, M., and Spanbenberg, J. E.. 2015. Palaeoecological insights on Toarcian and lower Aalenian calcareous nannofossils from the Lusitanian Basin (Portugal). Palaeogeography, Palaeoclimatology, Palaeoecology 436:246262.
Gahr, M. E. 2002. Palökologie des Makrobenthos aus dem Unter-Toarc SW-Europas. Beringeria 31:3204.
García Joral, F., Gómez, J. J., and Goy, A.. 2011. Mass extinction and recovery of the Early Toarcian (Early Jurassic) brachiopods linked to climate change in Northern and Central Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 302:367380.
García Joral, F., Baeza-Carratalá, J. F., and Goy, A.. 2018. Changes in brachiopod body size prior to the Early Toarcian (Jurassic) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 506:242249.
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., and Heinsohn, R.. 2011. Declining body size: a third universal response to warming? Trends in Ecology and Evolution 26:285291.
Gazeau, F., Parker, L. M., Comeau, S., Gattuso, J.-P., O'Connor, W. A., Martin, S., Pörtner, H.- O., and Ross, P. M.. 2013. Impacts of ocean acidification on marine shelled molluscs. Marine Biology 160:22072245.
Genner, M. J., Sims, D. W., Southward, A. J., Budd, G. C., Masterson, P., McHugh, M., Rendle, P., Southall, E. J., Wearmouth, V. J., and Hawkins, S. J.. 2009. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Global Change Biology 16:517527.
Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A., and Merilä, J.. 2008. Climate change and evolution: disentangling environmental and genetic responses. Molecular Ecology 17:167178.
Gómez, J. J., and Goy, A.. 2011. Warming-driven mass extinction in the Early Toarcian (Early Jurassic) of northern and central Spain. Correlation with other time-equivalent European sections. Palaeogeography, Palaeoclimatology, Palaeoecology 306:176195.
Gsell, A. S., Scharfenberger, U., Özkundakci, D., Walters, A., Hansson, L.-A., Janssen, A. B. G., Nõges, P., Reid, P. C., Schindler, D. E., Van Donk, E., Dakos, V., and Adrian, R.. 2016. Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems. Proceedings of the National Academy of Sciences USA 113:E8089E8095.
Hallam, A., and Wignall, P. B.. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford.
He, W., Shi, G. R., Feng, Q., Campi, M. J., Gu, S., Bu, J., Peng, Y., and Meng, Y.. 2007. Brachiopod miniaturization and its possible causes during the Permian–Triassic crisis in deep water environments, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 252:145163.
He, W., Shi, G. R., Xiao, Y., Zhang, K., Yang, T., Wu, H., Zhang, Y., Chen, B., Yue, M., Shen, J., Wang, Y., Yang, H., and Wu, S.. 2017. Body-size changes of latest Permian brachiopods in varied palaeogeographic settings in South China and implications for controls on animal miniaturization in a highly stressed marine ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology 486:3345.
He, W.-H., Twitchett, R. J., Zhang, Y., Shi, G. R., Feng, Q.-L., Yu, J.-X., Wu, S.-B., and Peng, X.-F.. 2010. Controls on body size during the Late Permian mass extinction event. Geobiology 8:391402.
Hesselbo, S. P., Gröcke, D. R., Jenkyns, H. C., Bjerrum, C. J., Farrimond, P., Morgans Bell, H. S., and Green, O. R.. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406:392395.
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V., and Oliveira, L. C. V.. 2007. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters 253:455470.
Huang, B., Harper, D. A. T., Zhan, R., and Rong, J.. 2010. Can the Lilliput effect be detected in the brachiopod faunas of South China following the terminal Ordovician mass extinction? Palaeogeography, Palaeoclimatology, Palaeoecology 285:277286.
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.
Hunt, G. 2015. paleoTS: analyze paleontological time-series. R package, Version 0.5-1., accessed 22 October 2018.
Jenkyns, H. C. 1988. The early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. American Journal of Science 288:101151.
Jenkyns, H. C. 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11:Q03004.
Kelly, M. W., and Hofmann, G. E.. 2013. Adaptation and the physiology of ocean acidification. Functional Ecology 27:980990.
Kiessling, W., Schobben, M., Ghaderi, A., Hairapetian, V., Leda, L., and Korn, D.. 2018. Pre–mass extinction decline of latest Permian ammonoids. Geology 46:283286.
Knoll, A. H, Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W.. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.
Kosnik, M. A., Jablonski, D., Lockwood, R., and Novack-Gottshall, P. M.. 2006. Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts. Palaios 21:588597.
Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31:578590.
Mann, H. B., and Whitney, D. R.. 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18:5060.
Martindale, R. C., and Aberhan, M.. 2017. Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeography, Palaeoclimatology, Palaeoecology 478:103120.
Mattioli, E., Pittet, B., Petitpierre, L., and Mailliot, S.. 2009. Dramatic decrease of pelagic carbonate production by nannoplankton across the Early Toarcian anoxic event (T-OAE). Global and Planetary Change 65:134145.
Miguez-Salas, O., Rodríguez-Tovar, F. J., and Duarte, L. V.. 2017. Selective incidence of the toarcian oceanic anoxic event on macroinvertebrate marine communities: a case from the Lusitanian basin, Portugal. Lethaia 50:548560.
Moore, J. K., Fu, W., Primeau, F., Britten, G. L., Lindsay, K., Long, M., Doney, S. C., Mahowald, N., Hoffman, F., and Randerson, J. T.. 2018. Sustained climate warming drives declining marine biological productivity. Science 359:11391143.
Morten, S. D., and Twitchett, R. J.. 2009. Fluctuations in the body size of marine invertebrates through the Pliensbachian–Toarcian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 284:2938.
Mouterde, R., Ruget, C., and Moitinho de Almeida, F.. 1964–1965. Coupe du Lias au Sud de Condeixa. Comunicações dos Serviços Geológicas de Portugal 48:6191.
O'Gorman, E. J., Zhao, L., Pichler, D. E., Adams, G., Friberg, N., Rall, B. C., Seeney, A., Zhang, H., Reuman, D. C., and Woodward, G.. 2017. Unexpected changes in community size structure in a natural warming experiment. Nature Climate Change 7:659666.
Ohlberger, J. 2013. Climate warming and ectotherm body size—from individual physiology to community ecology. Functional Ecology 27:9911001.
Parker, L. M., Ross, P. M., O'Connor, W. H., Pörtner, H.-O., Scanes, E., and Wright, J. M.. 2013. Predicting the response of molluscs to the impact of ocean acidification. Biology:651692.
Pálfy, J., and Smith, P. L.. 2000. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology 28:747750.
Peck, L. S., and Harper, E. M.. 2010. Variation in size of living articulated brachiopods with latitude and depth. Marine Biology 157:22052213.
Peck, L. S., Clark, M. S., Morley, S. A., Massey, A., and Rossetti, H.. 2009. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Functional Ecology 23:248256.
Pittet, B., Suan, G., Lenoir, F., Duarte, L.V., and Mattioli, E.. 2014. Carbon isotope evidence for sedimentary discontinuities in the Lower Toarcian of the Lusitanian Basin (Portugal): sea level change at the onset of the Oceanic Anoxic Event. Sedimentary Geology 303:114.
Pörtner, H.-O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Marine Ecology Progress Series 373:203217.
Pörtner, H.-O., and Farrell, A. P.. 2008. Physiology and climate change. Science 322:690692.
Pörtner, H.-O., Langenbuch, M., and Michaelidis, B.. 2005. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. Journal of Geophysical Research 110:C09S10.
Pörtner, H.-O., Bock, C., and Mark, F. C.. 2017. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. Journal of Experimental Biology 220:26852696.
R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ries, J. B., Cohen, A. L., and McCorkle, D.. 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:11311134.
Rita, P., Reolid, M., and Duarte, L. V.. 2016. Benthic foraminiferal assemblages record major environmental perturbations during the Late Pliensbachian–Early Toarcian interval in the Peniche GSSP, Portugal. Palaeogeography, Palaeoclimatology, Palaeoecology 454:267281.
Rodríguez-Tovar, F. J., Miguez-Salas, O., and Duarte, L. V.. 2017. Toarcian Oceanic Anoxic Event induced unusual behaviour and palaeobiological changes in Thalassinoides tracemakers. Palaeogeography, Palaeoclimatology, Palaeoecology 485:4656.
Röhl, H.-J., Schmidt-Röhl, A., Oschmann, W., Frimmel, A., and Schwark, L.. 2001. The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 165:2752.
Sell, B., Ovtcharova, M., Guex, J., Bartolini, A., Jourdan, F., Spangenberg, J. E., Vicente, J.-C., and Schaltegger, U.. 2014. Evaluating the temporal link between the Karoo LIP and climatic–biologic events of the Toarcian Stage with high-precision U–Pb geochronology. Earth and Planetary Science Letters 408:4856.
Song, H., Wignall, P. B., Chu, D., Tong, J., Sun, Y., Song, H., He, W., and Tian, Li. 2014. Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Scientific Reports 4:srep04132.
Steele-Petrović, H. M. 1976. Brachiopod food and feeding processes. Palaeontology 19:417436.
Suan, G., Pittet, B., Bour, I., Mattioli, E., Duarte, L. V., and Mailliot, S.. 2008. Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: consequence for its possible causes. Earth and Planetary Science Letters 267:666679.
Suan, G., Mattioli, E., Pittet, B., Lécuyer, C., Suchéras-Marx, B., Duarte, L. V., Philippe, M., Reggiani, L., and Martineau, F.. 2010. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth and Planetary Science Letters 290:448458.
Suan, G. B., van de Schootbrugge, , Adatte, T., Fiebig, J., and Oschmann, W.. 2015. Calibrating the magnitude of the Toarcian carbon cycle perturbation. Paleoceanography 30:495509.
Them, T. R. II, Gill, B. C., Caruthers, A. H., Gröcke, D. R., Tulsky, E. T., Martindale, R. C., Poulton, T. P., and Smith, P. L.. 2017. High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle. Earth and Planetary Science Letters 459:118126.
Trecalli, A., Spangenberg, J., Adatte, T., Föllmi, K. B., and Parente, M.. 2012. Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event. Earth and Planetary Science Letters 357–358:214225.
van Hinsbergen, D. J. J., de Groot, L. V., van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.. 2015. A paleolatitude calculator for paleoclimate studies. PLoS ONE 10:e0126946.
Vaquer-Sunyer, R., and Duarte, C. M.. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences USA 105:1545215457.
Voje, K. L. 2018. Assessing adequacy of models of phyletic evolution in the fossil record. Methods in Ecology and Evolution 9:24022413.
Vörös, A. 2002. Victims of the Early Toarcian anoxic event: the radiation and extinction of Jurassic Koninckinidae (Brachiopoda). Lethaia 35:345357.
Vörös, A., Kocsis, Á. T., and Pálfy, J.. 2016. Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 457:233241.
Widdicombe, S., and Spicer, J. I.. 2008. Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? Journal of Experimental Marine Biology and Ecology 366:187197.
Wignall, P. B., and Bond, D. P. G.. 2008. The end-Triassic and Early Jurassic mass extinction records in the British Isles. Proceedings of the Geologists’ Association 119:7384.
Wignall, P. B., Newton, R. J., and Little, C. T. S.. 2005. The timing of paleoenvironmental change and cause-and-effect relationships during the early Jurassic mass extinction in Europe. American Journal of Science 305:10141032.
Zhang, Y., Shi, G. R., He, W.-H., Wu, H.-T., Lei, Y., Zhang, K.-X., Du, C.-C., Yang, T.-L., Yue, M.-L., and Xiao, Y.-F.. 2016. Significant pre-mass extinction animal body-size changes: evidences from the Permian–Triassic boundary brachiopod faunas of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 448:8596.

Related content

Powered by UNSILO

Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal

  • Veronica Piazza (a1), Luís V. Duarte (a2), Johan Renaudie (a1) and Martin Aberhan (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.