Skip to main content Accessibility help

Paleocommunity Analysis of the Burgess Shale Tulip Beds, Mount Stephen, British Columbia: Comparison with the Walcott Quarry and Implications for Community Variation in the Burgess Shale

  • Lorna J. O’Brien (a1) (a2) and Jean-Bernard Caron (a3) (a4)


The Tulip Beds locality on Mount Stephen (Yoho National Park, British Columbia) yields one of the most abundant and diverse (~10,000 specimens in 110 taxa) Burgess Shale fossil assemblages in the Canadian Rockies. Detailed semi quantitative and quantitative analyses of this assemblage suggest strong similarities with the Walcott Quarry on Fossil Ridge. Both assemblages are dominated by epibenthic, sessile, and suspension feeding taxa, mostly represented by arthropods and sponges and have comparable diversity patterns, despite sharing only about half the genera. However, the Tulip Beds has a higher relative abundance of suspension feeders and taxa of unknown affinity compared to the Walcott Quarry. These biotic variations are probably largely attributable to ecological and evolutionary differences between the two temporally distinct communities that adapted to similar, but not identical, environmental settings. For instance, the Tulip Beds is farther away from the Cathedral Escarpment than the Walcott Quarry. The Tulip Beds and Walcott Quarry assemblages are more similar to each other than either one is to the assemblages of the Chengjiang biota, although the relative diversity of major taxonomic groups and ecological patterns are similar in all assemblages. The conserved diversity patterns and ecological structures among sites suggest that the ecological composition of Cambrian Burgess Shale-type communities was relatively stable across wide geographic and temporal scales.



Hide All
Aitken, J. D., and McIlreath, I. A.. 1984. The cathedral reef escarpment; A Cambrian great wall with humble origins. Geos 13:1719.
Ausich, W. I., and Babcock, L. E.. 1998. The phylogenetic position of Echmatocrinus brachiatus, a probable octocoral from the Burgess Shale. Palaeontology 41:193202.
Ausich, W. I., and Babcock, L. E.. 2000. Echmatocrinus, a Burgess Shale animal reconsidered. Lethaia 33:9294.
Bambach, R. K., Bush, A. M., and Erwin, D. H.. 2007. Autecology and the filling of ecospace: Key metazoan radiations. Palaeontology 50:122.
Bengtson, P. 1988. Open nomenclature. Palaeontology 31:223227.
Botting, J. P. 2007. ‘Cambrian’ demosponges in the Ordovician of Morocco: Insights into the early evolutionary history of sponges. Geobios 40:737748.
Bottjer, D. J., and Ausich, W. I.. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.
Briggs, D. E. G., and Fortey, R. A.. 2005. Wonderful strife: Systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology 31:94112.
Bush, A. M., and Bambach, R. K.. 2011. Paleoecologic megatrends in marine Metazoa. Annual Review of Earth and Planetary Sciences 39:241269.
Caron, J. B., Gaines, R. R., Mãngano, M. G., Streng, M., and Daley, A. C.. 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the southern Canadian Rockies. Geology 38:811814.
Caron, J. B., Gaines, R. R., Aria, C., Mãngano, M. G., and Streng, M.. 2014. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nature Communications 5:3210. doi:10.1038/ncomms4210.
Caron, J. B., and Jackson, D. A.. 2006. Taphonomy of the Greater Phyllopod Bed Community, Burgess Shale. Palaios 21:451465.
Caron, J. B., and Jackson, D. A.. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology 258:222256.
Chen, H. 2012. VennDiagram: Generate high-resolution Venn and Euler plots. R package version 113.
Clausen, S., Hou, X. G., Bergström, J., and Franzén, C.. 2010. The absence of echinoderms from the Lower Cambrian Chengjiang fauna of China: Palaeoecological and palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology 294:133141.
Collins, D., Briggs, D. E. G., and Conway Morris, S.. 1983. New Burgess Shale fossil sites reveal Middle Cambrian faunal complex. Science 222:163167.
Conway Morris, S. 1993. The fossil record and early evolution of the Metazoa. Nature 361:219225.
Conway Morris, S 1986. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). Palaeontology 29:423467.
Conway Morris, S., and Peel, J. S.. 2008. The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontologica Polonica 53:137148.
Daley, A. C., and Budd, G. E.. 2010. New anomalocaridid appendages from the Burgess Shale, Canada. Palaeontology 53:721738.
Dornbos, S. Q., and Chen, J. Y.. 2008. Community palaeoecology of the early Cambrian Maotianshan Shale biota: Ecological dominance of priapulid worms. Palaeogeography, Palaeoclimatology, Palaeoecology 258:200212.
Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A., and Erwin, D. H.. 2008. Compilation and network analyses of Cambrian food webs. PLoS Biology 6:e102. doi: 10.1371/journal.pbio.0060102.
Fletcher, T. P., and Collins, D.. 1998. The Middle Cambrian Burgess Shale and its relationship to the Stephen Formation in the southern Canadian Rocky Mountains. Canadian Journal of Earth Sciences 35:413436.
Fletcher, T. P., and Collins, D.. 2003. The Burgess Shale and associated Cambrian formations west of the Fossil Gully Fault Zone on Mount Stephen, British Columbia. Canadian Journal of Earth Sciences 40:18231838.
Gabbott, S.E., Zalasiewicz, J., and Collins, D.. 2008. Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia. Journal of the Geological Society 165:307318.
Gaines, R. R. 2011. A new Burgess Shale-type locality in the “thin” Stephen Formation, Kootenay National Park, British Columbia: stratigraphic and paleoenvironmental setting. Palaeontographica Canadiana 31:7388.
Gaines, R. R., Briggs, D. E. G., Orr, P. J., and Van Roy, P.. 2012b. Preservation of giant anomalocaridids in silica-chlorite concretions from the Early Ordovician of Morocco. Palaios 27:317325.
Gaines, R. R., Briggs, D. E. G., and Yuanlong, Z.. 2008. Cambrian Burgess Shale–type deposits share a common mode of fossilization. Geology 36:755758.
Gaines, R. R., and Droser, M. L.. 2010. The paleoredox setting of Burgess Shale-type deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 297:649661.
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., Peng, J., and Canfield, D. E.. 2012a. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences 109:51805184.
García-Bellido, D. C., and Collins, D.. 2006. A new study of Marrella splendens (Arthropoda, Marrellomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Canadian Journal of Earth Sciences 43:721742.
García-Bellido, D. C., and Collins, D.. 2007. Reassessment of the genus Leanchoilia (Arthropoda, Arachnomorpha) from the middle Cambrian Burgess Shale, British Columbia, Canada. Palaeontology 50:693709.
Han, J., Shu, D., Zhang, Z., Liu, J., Zhang, X., and Yao, Y.. 2006. Preliminary notes on soft-bodied fossil concentrations from the Early Cambrian Chengjiang deposits. Chinese Science Bulletin 51:24822492.
Haug, J. T., Caron, J. B., and Haug, C.. 2013. Demecology and palaeo-eco-devo in the Cambrian — synchronized molting in arthropods from the Burgess Shale. BMC Biology 11:64.
Haug, J. T., Mayer, G., Haug, C., and Briggs, D. E. G.. 2012. A carboniferous non-onychophoran lobopodian reveals long-term survival of a Cambrian morphotype. Current Biology 22:16731675.
Legg, D. A., Sutton, M. D., Edgecombe, G. D., and Caron, J. B.. 2012. Cambrian bivalved arthropod reveals origin of arthrodization. Proceedings of the Royal Society B: Biological Sciences 279:46994704.
Mángano, M. G. 2011. Trace-fossil assemblages in a Burgess Shale-type deposit from the Stephen Formation at Stanley Glacier, Canadian Rocky Mountains: Unraveling ecologic and evolutionary controls. Palaeontographica Canadiana 31:89107.
McIlreath, I. A. 1977. Accumulation of a Middle Cambrian, deep-water limestone debris apron adjacent to a vertical, submarine carbonate escarpment, Southern Rocky Mountains, Canada. S.E.P.M. Special Publication 25:113124.
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:273294.
O’Brien, L. J., Caron, J. B., and Gaines, R. R.. 2014. Taphonomy and depositional setting of the Burgess Shale Tulip Beds, Mount Stephen, British Columbia. Palaios 29:309324.
O’Brien, L.J., and Caron, J. B.. 2012. A new stalked filter-feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada. PLoS ONE 7:e29233.
Oksanen, J., Guillaume Blanchet, F., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, H., and Wagner, H.. 2011). Vegan: Community Ecology Package, R package version 2.0-2 ed.
Powell, W. G., Johnston, P. A., and Collom, C. J.. 2003. Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 201:249268.
R Core Development Team. 2012. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 1.4 ed. R Foundation for Statistical Computing, Vienna, Austria.
Rigby, J. K., and Collins, D.. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science, p. 155.
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge, 436 pp.
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Museum of Comparative Zoology, Harvard University, Special Publication, 283 pp.
Sprinkle, J 1976. Classification and phylogeny of “pelmatozoan” echinoderms. Systematic Zoology 25:8391.
Sprinkle, J., and Collins, D.. 1998. Revision of Echmatocrinus from the Middle Cambrian Burgess Shale of British Columbia. Lethaia 31:269282.
Tokeshi, M. 1993. Species abundance patterns and community structure. Advanced Ecological Research 24:112186.
Van Iten, H., Zhu, M. Y., and Collins, D.. 2002. First report of Sphenothallus Hall, 1847 in the Middle Cambrian. Journal of Paleontology 76:902905.
Van Roy, P., and Briggs, D. E. G.. 2011. A giant Ordovician anomalocaridid. Nature 473:510513.
Van Roy, P., Orr, P. J., Botting, J. P., Muir, L. A., Vinther, J., Lefebvre, B., Hariri, K. E., and Briggs, D. E. G.. 2010. Ordovician faunas of Burgess Shale type. Nature 465:215218.
Vannier, J. 2012. Gut contents as direct indicators for trophic relationships in the Cambrian marine ecosystem. PLoS ONE 7:e52200. doi: 10.1371/journal.pone.0052200.
Villéger, S., Novack-Gottshall, P. M., and Mouillot, D.. 2011. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters 14:561568.
Warnes, G. R. 2011. Gplots: Various R programming tools for plotting data, R package version 2.10.1 ed.
Williams, M., Vannier, J., Corbari, L., and Massabuau, J. C.. 2011. Oxygen as a driver of early arthropod micro-benthos evolution. PLoS ONE 6:e28183. doi: 10.1371/journal.pone.0028183.
Zhang, X., Liu, W., and Zhao, Y.. 2008. Cambrian Burgess Shale-type Lagerstätten in South China: Distribution and significance. Gondwana Research 14:255262.
Zhao, F., Caron, J. B., Bottjer, D. J., Hu, S., Yin, Z., and Zhu, M.. 2013. Comparative community paleoecology of the early Cambrian (Series 2, Stage 3) Chengjiang biota from China. Paleobiology 40:5069.
Zhao, F., Caron, J. B., Hu, S., and Zhu, M.. 2009. Quantitative analysis of taphofacies and paleocommunities in the early Cambrian Chengjiang Lagerstätte. Palaios 24:826839.
Zhao, F., Hu, S., Caron, J. B., Zhu, M., Yin, Z., and Lu, M.. 2012. Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology 346–347:5465.
Zhao, F., Zhu, M., and Hu, S.. 2010. Community structure and composition of the Cambrian Chengjiang biota. Science China Earth Sciences 53:17841799.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed