Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T07:09:55.527Z Has data issue: false hasContentIssue false

Oligo-Miocene climate change and mammal body-size evolution in the northwest United States: a test of Bergmann's Rule

Published online by Cambridge University Press:  05 September 2013

John D. Orcutt
Affiliation:
Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, U.S.A. E-mail: jorcutt@uoregon.edu
Samantha S. B. Hopkins
Affiliation:
Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, U.S.A. E-mail: jorcutt@uoregon.edu

Abstract

Whether or not climate plays a causal role in mammal body-size evolution is one of the longest-standing debates in ecology. Bergmann's Rule, the longest-standing modeladdressing this topic, posits that geographic body-mass patterns are driven by temperature, whereas subsequent research has suggested that other ecological variables, particularly precipitation and seasonality, may be the major drivers of body-size evolution. While paleoecological data provide a unique and crucial perspective on this debate, paleontological tests of Bergmann's rule and its corollaries have been scarce. We present a study of body-size evolution in three ecologically distinct families of mammal (equids, canids, and sciurids) during the Oligo-Miocene of the northwest United States, an ideal natural laboratory for such studies because of its rich fossil and paleoclimatic records. Body-size trends are different in all three groups, and in no case is a significant relationship observed between body size and any climatic variable, counter to what has been observed in modern ecosystems. We suggest that for most of the Cenozoic, at least in the Northwest, body mass has not been driven by any one climatic factor but instead has been the product of complex interactions between organisms and their environments, though the nature of these interactions varies from taxon to taxon. The relationship that exists between climate and body size in many groups of modern mammals, therefore, is the exception to the rule and may be the product of an exceptionally cool and volatile global climate. As anthropogenic global warming continues and ushers in climatic conditions more comparable to earlier intervals of the Cenozoic than to the modern day, models of corresponding biotic variables such as body size may lose predictive power if they do not incorporate paleoecological data.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.CrossRefGoogle ScholarPubMed
Alroy, J. 2003. Taxonomic inflation and body mass distributions in North American fossil mammals. Journal of Mammalogy 84:431443.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J., Koch, P. L., and Zachos, J. C. 2000. Global climate change and North American mammal evolution. Paleobiology 26:259288.CrossRefGoogle Scholar
Ashton, K. G. 2002a. Do amphibians follow Bergmann's Rule? Canadian Journal of Zoology 80:708716.CrossRefGoogle Scholar
Ashton, K. G. 2002b. Patterns of within-species body size variation of birds: strong evidence for Bergmann's Rule. Global Ecology and Biogeography 11:505523.CrossRefGoogle Scholar
Ashton, K. G., and Feldman, C. R. 2003. Bergmann's Rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57:11511163.Google Scholar
Ashton, K. G., Tracy, M. C., and de Quiroz, A. 2000. Is Bergmann's Rule valid for mammals? American Naturalist 156:390415.CrossRefGoogle ScholarPubMed
Barnosky, A. D. 2001. Distinguishing the effects of the Red Queen and the Court Jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology 21:172185.CrossRefGoogle Scholar
Barnosky, A. D., Hadly, E. A., and Bell, C. J. 2003. Mammalian response to global warming on varied temporal scales. Journal of Mammalogy 84:354368.2.0.CO;2>CrossRefGoogle Scholar
Bergmann, C., 1847. Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gottinger Studien 3:595708.Google Scholar
Berteaux, D., Humphries, M. M., Krebs, C. J., Lima, M., McAdam, A. G., Pettorelli, N., Réale, D., Saitoh, T., Tkadlec, E., Weladji, R. B., and Stenseth, N. C. 2006. Constraints to projecting the effects of climate change on mammals. Climate Research 32:151158.CrossRefGoogle Scholar
Blackburn, T. M., and Gaston, K. J., 1996. Spatial patterns in the body sizes of bird species in the New World. Oikos 77:436446.CrossRefGoogle Scholar
Blackburn, T. M., and Hawkins, B. A. 2004. Bergmann's Rule and the mammal fauna of northern North America. Ecography 27:715724.CrossRefGoogle Scholar
Carrasco, M. A., Kraatz, B. P., Davis, E. B., and Barnosky, A. D. 2005. Miocene Mammal Mapping Project (MIOMAP). http://www.ucmp.berkeley.edu/miomap/.Google Scholar
Creighton, G. K. 1980. Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. Journal of the Zoological Society of London 191:435443.CrossRefGoogle Scholar
Damuth, J. 1993. Cope's rule, the island rule and the scaling of mammalian population density. Nature 365:748750.CrossRefGoogle ScholarPubMed
Erlinge, S. 1987. Why do European stoats Mustela erminea not follow Bergmann's Rule? Holarctic Ecology 10:3339.Google Scholar
Gingerich, P. D. 2003. Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. InWing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., eds. Causes and consequences of globally warm climates in the early Paleogene. Geological Society of America Special Paper 369:463478.Google Scholar
Goodwin, H. T. 2008. Sciuridae. Pp. 355376inJanis, C. M., Gunnell, G. F., and Uhen, M. D., eds. Evolution of Tertiary mammals of North America, Vol. 2. Small mammals, xenarthrans, and marine mammals. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gotelli, N. J., and Ellison, A. M. 2004. A primer of ecological statistics. Sinauer, Sunderland, Mass.Google Scholar
Gould, G. C., and MacFadden, B. J. 2004. Gigantism, dwarfism, and Cope's rule: “nothing in evolution makes sense without a phylogeny.” Bulletin of the American Museum of Natural History 285:219237.2.0.CO;2>CrossRefGoogle Scholar
Hopkins, S. S. B. 2007. Causes of lineage decline in the Aplodontidae: testing for the influence of physical and biological change. Palaeogeography, Palaeoclimatology, Palaeoecology 246:331353.CrossRefGoogle Scholar
Humboldt, A., and Bonpland, A. 1807. Essay on the geography of plants. Schoell, Paris.Google Scholar
James, F. C. 1970. Geographic size variation in birds and its relationship to climate. Ecology 51:365390.CrossRefGoogle Scholar
Janis, C. M. 1990. Correlation of cranial and dental variables with body size in ungulates and macropodoids Pp. 255299inDamuth, J. and MacFadden, B. J., eds. Body size in mammalian paleobiology. Cambridge University Press, Cambridge.Google Scholar
Korpimäki, E., and Norrdahl, K. 1989. Avian predation on mustelids in Europe 1: occurrence and effects on body size variation and life traits. Oikos 55:205215.CrossRefGoogle Scholar
Lindsey, C. C. 1966. Body sizes of poikilotherm vertebrates at different latitudes. Evolution 20:456465.CrossRefGoogle ScholarPubMed
MacFadden, B. J. 1986. Fossil horses from “Eohippus” (Hyracotherium) to Equus: scaling, Cope's Law, and the evolution of body size. Paleobiology 12:355369.CrossRefGoogle Scholar
MacFadden, B. J. 1992. Fossil horses: systematics, paleobiology, and evolution of the Family Equidae. Cambridge University Press, Cambridge.Google Scholar
Meiri, S., and Dayan, T. 2003. On the validity of Bergmann's Rule. Journal of Biogeography 30:331351.CrossRefGoogle Scholar
Millar, J. S., and Hickling, G. J. 1990. Fasting endurance and the evolution of mammalian body size. Functional Ecology 4:512.CrossRefGoogle Scholar
Prothero, D. R. 2004. Did impacts, volcanic eruptions, or climate change affect mammalian evolution? Palaeogeography, Palaeoclimatology, Palaeoecology 214:283294.CrossRefGoogle Scholar
Ray, C. 1960. The application of Bergmann's and Allen's rules to the poikilotherms. Journal of Morphology 106:85108.CrossRefGoogle Scholar
Retallack, G. J. 2004. Ecological polarities of mid-Cenozoic fossil plants and animals from central Oregon. Paleobiology 30:561588.2.0.CO;2>CrossRefGoogle Scholar
Retallack, G. J. 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 33:333336.CrossRefGoogle Scholar
Retallack, G. J. 2007. Cenozoic paleoclimate on land in North America. Journal of Geology 115:271294.CrossRefGoogle Scholar
Rodríguez, M. Á., Olalla-Tárraga, M. Á., and Hawkins, B. A. 2008. Bergmann's Rule and the geography mammal body size in the Western Hemisphere. Global Ecology and Biogeography 17:274283.CrossRefGoogle Scholar
Rose, P. J., Fox, D. L., Marcot, J., and Badgley, C. 2011. Flat latitudinal gradient in Paleocene mammal richness suggests decoupling of climate and biodiversity. Geology 39:163166.CrossRefGoogle Scholar
Rosenzweig, M. L. 1968. The strategy of body size in mammalian carnivores. American Midland Naturalist 80:299315.CrossRefGoogle Scholar
Royer, D. L. 1999. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Geology 27:11231126.2.3.CO;2>CrossRefGoogle Scholar
Schad, W. 1977. Man and mammals: toward a biology of form. Waldorf, New York.Google Scholar
Sheldon, N. D., Retallack, G. J., and Tanaka, S. 2002. Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. Journal of Geology 110:687696.CrossRefGoogle Scholar
Simpson, G. G. 1964. Species density of North American recent mammals. Systematic Biology 13:5773.CrossRefGoogle Scholar
Smith, F. A., Boyer, A. G., Brown, J. H., Costa, D. P., Dayan, T., Ernest, S. K. M., Evans, A. R., Fortelius, M., Gittleman, J. L., Hamilton, M. J., Harding, L. E., Lintulaakso, K., Lyons, S. K., McCain, C., Okie, J. G., Saarinen, J. J., Sibly, R. M., Stephens, P. R., Theodor, J., and Uhen, M. D. 2010. The evolution of maximum body size of terrestrial mammals. Science 330:12161219.CrossRefGoogle ScholarPubMed
Tedford, R. H., Albright III, L. B., Barnosky, A. D., Ferrusquia-Villafranca, I., Hunt, R. M. Jr., Storer, J. E., Swisher, C. C. III, Voorhies, M. R., Webb, S. D., and Whistler, D. P. 2004. Mammalian biochronology of the Arikareean through Hemphillian interval (late Oligocene through early Pliocene Epochs). Pp. 169231inWoodburne, M. O., ed. Late Cretaceous and Cenozoic mammals of North America. Columbia University Press, New York.CrossRefGoogle Scholar
Tedford, R. H., Wang, X., and Taylor, B. E. 2009. Phylogenetic systematics of the North American fossil Caninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History 325:1218.CrossRefGoogle Scholar
Van Valkenburgh, B. 1990. Skeletal and dental predictors of body mass in carnivores. Pp. 181205inDamuth, J. and MacFadden, B. J., eds. Body size in mammalian paleobiology. Cambridge University Press, Cambridge.Google Scholar
Van Valkenburgh, B., Wang, X., and Damuth, J. 2004. Cope's rule, hypercarnivory, and extinction in North American canids. Science 306:101104.CrossRefGoogle ScholarPubMed
Wang, X., and Tedford, R. H. 2008. Dogs: their fossil relatives and evolutionary history. Columbia University Press, New York.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.CrossRefGoogle ScholarPubMed