Skip to main content Accessibility help
×
Home

Molecular paleobiology of early-branching animals: integrating DNA and fossils elucidates the evolutionary history of hexactinellid sponges

  • Martin Dohrmann (a1), Sergio Vargas (a1), Dorte Janussen (a2), Allen G. Collins (a3) and Gert Wörheide (a4)...

Abstract

Reconciliation of paleontological and molecular phylogenetic evidence holds great promise for a better understanding of the temporal succession of cladogenesis and character evolution, especially for taxa with a fragmentary fossil record and uncertain classification. In zoology, studies of this kind have largely been restricted to Bilateria. Hexactinellids (glass sponges) readily lend themselves to test such an approach for early-branching (non-bilaterian) animals: they have a long and rich fossil record, but for certain taxa paleontological evidence is still scarce or ambiguous. Furthermore, there is a lack of consensus for taxonomic interpretations, and discrepancies exist between neontological and paleontological classification systems. Using conservative fossil calibration constraints and the largest molecular phylogenetic data set assembled for this group, we infer divergence times of crown-group Hexactinellida in a Bayesian relaxed molecular clock framework. With some notable exceptions, our results are largely congruent with interpretations of the hexactinellid fossil record, but also indicate long periods of undocumented evolution for several groups. This study illustrates the potential of an integrated molecular/paleobiological approach to reconstructing the evolution of challenging groups of organisms.

Copyright

Corresponding author

*E-mail: woerheide@lmu.de. Corresponding author

References

Hide All
Bengtson, S. 1986. Siliceous microfossils from the Upper Cambrian of Queensland. Alcheringa 10:195216.
Botting, J. P. 2004. An exceptional Caradoc sponge fauna from the Llanfawr Quarries, Central Wales and phylogenetic implications. Journal of Systematic Palaeontology 2:3163.
Brasier, M. D., Green, O., and Shields, G. 1997. Ediacaran sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology 25:303306.
Brochu, C. A., Sumrall, C. D., and Theodor, J. M. 2004. When clocks (and communities) collide: estimating divergence time from molecules and the fossil record. Journal of Paleontology 78:16.
Brückner, A. 2006. Taxonomy and paleoecology of lyssacinosan Hexactinellida from the Upper Cretaceous (Coniacian) of Bornholm, Denmark, in comparison with other Postpaleozoic representatives. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 564:1103.
Brückner, A., and Janussen, D. 2005. The first entirely preserved fossil sponge species of the genus Rossella (Hexactinellida) from the Upper Cretaceous of Bornholm, Denmark. Journal of Paleontology 79:2128.
Brunton, F. R., and Dixon, O. A. 1994. Siliceous sponge-microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors. Palaios 9:370387.
Cárdenas, P., Pérez, T., and Boury-Esnault, N. 2012. Sponge systematics facing new challenges. Advances in Marine Biology 61:79209.
Carrera, M. G., and Botting, J. P. 2008. Evolutionary history of Cambrian spiculate sponges: implications for the Cambrian evolutionary fauna. Palaios 23:124138.
Cartwright, P., and Collins, A. G. 2007. Fossils and phylogenies: integrating multiple lines of evidence to investigate the origin of early major metazoan lineages. Integrative and Comparative Biology 47:744751.
Dohrmann, M., Janussen, D., Reitner, J., Collins, A. G., and Wörheide, G. 2008. Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Systematic Biology 57:388405.
Dohrmann, M., Collins, A. G., and Wörheide, G. 2009. New insights into the phylogeny of glass sponges (Porifera, Hexactinellida): monophyly of Lyssacinosida and Euplectellinae, and the phylogenetic position of Euretidae. Molecular Phylogenetics and Evolution 52:257262.
Dohrmann, M., Göcke, C., Janussen, D., Reitner, J., Lüter, C., and Wörheide, G. 2011. Systematics and spicule evolution in dictyonal sponges (Hexactinellida: Sceptrulophora) with description of two new species. Zoological Journal of the Linnean Society 163:10031025.
Dohrmann, M., Haen, K. M., Lavrov, D. V., and Wörheide, G. 2012a. Molecular phylogeny of glass sponges (Porifera, Hexactinellida): increased taxon sampling and inclusion of the mitochondrial protein-coding gene, cytochrome oxidase subunit I. Hydrobiologia 687:1120.
Dohrmann, M., Göcke, C., Reed, J., and Janussen, D. 2012b. Integrative taxonomy justifies a new genus, Nodastrella gen. nov., for North Atlantic “Rossella” species (Porifera: Hexactinellida: Rossellidae). Zootaxa 3383:113.
Dong, X., and Knoll, A. H. 1996. Middle and Late Cambrian sponge spicules from Hunan, China. Journal of Paleontology 70:173184.
Donofrio, D. A. 1991. Radiolaria and Porifera (spicula) from the Upper Triassic of Aghdarband (NE-Iran). Abhandlungen der Geologischen Bundes-Anstalt 38:205222.
Donoghue, P. C. J., and Benton, M. J. 2007. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends in Ecology and Evolution 22:424431.
du Dresnay, R., Termier, G., and Termier, H. 1978. Les hexactinellides (lyssakides et dictyonine) du Lias Marocain. Géobios 11:269295.
Erpenbeck, D., and Wörheide, G. 2007. On the molecular phylogeny of sponges (Porifera). Zootaxa 1668:107126.
Erwin, D. H. 2011. Evolutionary uniformitarianism. Developmental Biology 357:2734.
Finks, R. M. 1960. Late Paleozoic sponge faunas of the Texas region. The siliceous sponges. Bulletin of the American Museum of Natural History 120:1160.
Gehling, J. G., and Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology 70:185195.
Gradstein, F. M., Ogg, J. G., and Smith, A. G. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.
Hooper, J. N. A., and van Soest, R. W. M. 2002. Systema Porifera: a guide to the classification of sponges. Plenum, New York.
Huelsenbeck, J. P., and Suchard, M. A. 2007. A nonparametric method for accommodating and testing across-site rate variation. Systematic Biology 56:975987.
Huerta-Cepas, J., Dopazo, J., and Gabaldón, T. 2010. ETE: a python environment for tree exploration. BMC Bioinformatics 11:24.
Kling, S. A., and Reif, W.-E. 1969. The Paleozoic history of amphidisc and hemidisc sponges: new evidence from the Carboniferous of Uruguay. Journal of Paleontology 43:14291434.
Kozur, H. W., Mostler, H., and Repetski, J. E. 1996. “Modern” siliceous sponges from the lowermost Ordovician (early Ibexian–early Tremadocian) Windfall Formation of the Antelope Range, Eureka County, Nevada, U.S.A. Geologisch-Paläontologische Mitteilungen Innsbruck 21:201221.
Krainer, K., and Mostler, H. 1991. Neue Hexactinellide Poriferen aus der südalpinen Mitteltrias der Karawanken (Kärnten, Österreich). Geologisch-Paläontologische Mitteilungen Innsbruck 18:131150.
Krautter, M. 2002. Fossil Hexactinellida: an overview. Pp. 12111223in Hooper and van Soest 2002.
Krautter, M., Conway, K. W., Barrie, J. V., and Neuweiler, M. 2001. Discovery of a “living dinosaur”: globally unique modern hexactinellid sponge reefs off British Columbia, Canada. Facies 44:265282.
Lartillot, N., and Philippe, H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution 21:10951109.
Lartillot, N., Lepage, T., and Blanquart, S. 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:22862288.
Leinfelder, R. R., Krautter, M., Laternser, R., Nose, M., Schmid, D. U., Schweigert, G., Werner, W., Keupp, H., Brugger, H., Herrmann, R., Rehfeld-Kiefer, U., Schroeder, J. H., Reinhold, C., Koch, R., Zeiss, A., Schweizer, V., Christmann, H., Menges, G., and Luterbacher, H. 1994. The origin of Jurassic reefs: current research developments and results. Facies 31:156.
Lepage, T., Bryant, D., Philippe, H., and Lartillot, N. 2007. A general comparison of relaxed molecular clock models. Molecular Biology and Evolution 24:26692680.
Leys, S. P., Mackie, G. O., and Reiswig, H. M. 2007. The biology of glass sponges. Advances in Marine Biology 52:1145.
Magallón, S. A. 2004. Dating lineages: molecular and paleontological approaches to the temporal framework of clades. International Journal of Plant Sciences 165:S7S21.
Maldonado, M., Carmona, M. C., Uriz, M. J., and Cruzado, A. 1999. Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401:785788.
Mehl, D. 1992. Die Entwicklung der Hexactinellida seit dem Mesozoikum. Paläobiologie, Phylogenie und Evolutionsökologie. Berliner Geowissenschaftliche Abhandlungen E 2:1164.
Mehl, D. 1996. Phylogenie und Evolutionsökologie der Hexactinellida (Porifera) im Paläozoikum. Geologisch-Paläontologische Mitteilungen Innsbruck Sonderband 4:155.
Mehl, D., and Fürsich, F. T. 1997. Middle Jurassic Porifera from Kachchh, western India. Paläontologische Zeitschrift 71:1933.
Mehl, D., and Hauschke, N. 1995. Hyalonema cretacea n. sp., first bodily preserved Amphidiscophora (Porifera, Hexactinellida) from the Mesozoic. Geologie und Paläontologie in Westfalen 38:8997.
Mehl, D., and Mostler, H. 1993. Neue Spicula aus dem Karbon und Perm: Konsequenzen für die Evolutionsökologie der Hexactinellida (Porifera), Strategien ihrer Gerüstbildung im Spätpaläozoikum und frühen Mesozoikum. Geologisch-Paläontologische Mitteilungen Innsbruck 19:128.
Mehl-Janussen, D. 1999. Die frühe Evolution der Porifera. Phylogenie und Evolutionsökologie der Poriferen im Paläozoikum mit Schwerpunkt der desmentragenden Demospongiae (“Lithistide”). Münchner Geowissenschaftliche, Abhandlungen A 37:172.
Mostler, H. 1986. Beitrag zur stratigraphischen Verbreitung und phylogenetischen Stellung der Amphidiscophora und Hexasterophora (Hexactinellida, Porifera). Mitteilungen der Österreichischen Geologischen Gesellschaft 78:319359.
Mostler, H. 1989. Mikroskleren hexactinellider Schwämme aus dem Lias der Nördlichen Kalkalpen. Jahrbuch der Geologischen Bundes-Anstalt 132:687700.
Mostler, H. 1990. Hexactinellide Poriferen aus pelagischen Kieselkalken (Unterer Lias, Nördliche Kalkalpen). Geologisch-Paläontologische Mitteilungen Innsbruck 17:143178.
Peterson, K. J., Summons, R. E., and Donoghue, P. C. J. 2007. Molecular palaeobiology. Palaeontology 50:775809.
Peterson, K. J., Cotton, J. A., Gehling, J. G., and Pisani, D. 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society of London B 363:14351443.
Pisera, A. 1999. Postpaleozoic history of the siliceous sponges with rigid skeletons. Memoirs of the Queensland Museum 44:463472.
Pisera, A. 2006. Palaeontology of sponges—a review. Canadian Journal of Zoology 84:242261.
Pisera, A., and Bodzioch, A. 1991. Middle Triassic lyssacinosan sponges from Upper Silesia (southern Poland), and the history of hexactinosan and lychniscosan sponges. Acta Geologica Polonica 41:193207.
Reiswig, H. M. 2002a. Order Lychniscosida Schrammen, 1903. P. 1377in Hooper and van Soest 2002.
Reiswig, H. M. 2002b. Family Tretodictyidae Schulze, 1886. Pp. 13411354in Hooper and van Soest 2002.
Reiswig, H. M. 2006. Classification and phylogeny of Hexactinellida (Porifera). Canadian Journal of Zoology 84:195204.
Reiswig, H. M., and Kelly, M. 2011. The marine fauna of New Zealand: hexasterophoran glass sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida. NIWA Biodiversity Memoirs 124:1176.
Reitner, J., and Mehl, D. 1995. Early Paleozoic diversification of sponges: new data and evidences. Geologisch-Paläontologische Mitteilungen Innsbruck 20:335347.
Rigby, J. K. 1986. Late Devonian sponges of western Australia. Reports of the Geological Survey of West Australia 18:144.
Rigby, J. K., and Gosney, T. C. 1983. First reported Triassic lyssakid sponges from North America. Journal of Paleontology 57:787796.
Rigby, J. K., Racki, G., and Wrzolek, T. 1981. Occurrence of dyctyid hexactinellid sponges in the Upper Devonian of the Holy Cross Mountains. Acta Geologica Polonica 31:163168.
Rigby, J. K., Pisera, A., Wrzolek, T., and Racki, G. 2001. Upper Devonian sponges from the Holy Cross Mountains, central Poland. Palaeontology 44:447488.
Rigby, J. K., Bell, G. L. Jr., and Thompson, K. 2007. Hexactinellid and associated sponges from the Upper Reef Trail Member of the Bell Canyon Formation, Southern Guadalupe Mountains National Park, Texas. Journal of Paleontology 81:12411256.
Salomon, D. 1990. Ein neuer lyssakiner Kieselschwamm, Regadrella leptotoichica (Hexasterophora, Hexactinellida) aus dem Untercenoman von Baddeckenstedt (Nordwestdeutschland). Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1990:342352.
Savill, N. J., Hoyle, D. C., and Higgs, P. G. 2001. RNA sequence evolution with secondary structure constraints: comparison of substitution rate models using maximum-likelihood methods. Genetics 157:399411.
Schrammen, A. 1912. Die Kieselspongien der oberen Kreide von Nordwestdeutschland. II. Teil: Triaxonia (Hexactinellida). Paläontographica Supplement 5:177385.
Smith, A. B., and McGowan, A. J. 2007. The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe? Palaeontology 50:765774.
Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:26882690.
Steiner, M., Mehl, D., Reitner, J., and Erdtmann, B.-D. 1993. Oldest entirely preserved sponges and other fossils from the lowermost Cambrian and a new facies reconstruction of the Yangtze platform (China). Berliner Geowissenschaftliche Abhandlungen E 9:293329.
Waggoner, B., and Collins, A. G. 2004. Reductio ad absurdum: testing the evolutionary relationships of Ediacaran and Paleozoic problematic fossils using molecular divergence dates. Journal of Paleontology 78:5161.
Warnock, R. C. M., Yang, Z., and Donoghue, P. C. J. 2012. Exploring uncertainty in the calibration of the molecular clock. Biology Letters 8:156159.
Webby, B. D., and Trotter, J. 1993. Ordovician sponge spicules from New South Wales, Australia. Journal of Paleontology 67:2841.
Welch, J. J., and Bromham, L. 2005. Molecular dating when rates vary. Trends in Ecology and Evolution 20:320327.
Wörheide, G., Dohrmann, M., Erpenbeck, D., Larroux, C., Maldonado, M., Voigt, O., Borchiellini, C., and Lavrov, D. V. 2012. Deep phylogeny and evolution of sponges (Phylum Porifera). Advances in Marine Biology 61:178.
Wu, W., Yang, A.-H., Janussen, D., Steiner, M., and Zhu, M.-Y. 2005. Hexactinellid sponges from the Early Cambrian black shale of South Anhui, China. Journal of Paleontology 79:10431051.
Xiao, S., Hu, J., Yuan, X., Parsley, R. L., and Cao, R. 2005. Articulated sponges from the Lower Cambrian Hetang Formation in southern Anhui, South China: their age and implications for the early evolution of sponges. Palaeogeography, Palaeoclimatology, Palaeoecology 220:89117.
Yang, Z. 2006. Computational molecular evolution. Oxford University Press, Oxford.
Yang, Z., and Rannala, B. 2006. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Molecular Biology and Evolution 23:212226.
Zhang, X.-g., and Pratt, B. R. 1994. New and extraordinary Early Cambrian sponge spicule assemblage from China. Geology 22:4346.
Zhang, X.-g., 2000. A varied Middle Ordovician sponge spicule assemblage from Western Newfoundland. Journal of Paleontology 74:386393.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed