Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T19:17:52.236Z Has data issue: false hasContentIssue false

Life as a geologic force: New opportunities for paleontology?

Published online by Cambridge University Press:  08 April 2016

Peter Westbroek*
Affiliation:
Department of Biochemistry, University of Leiden, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands

Extract

From a geological point of view, life is an integrated part of the exogenic cycle, a mere elaboration of the physical and chemical processes operating on earth. The origin of life marks the transition from a physical and chemical world into one where physical, chemical, and biological processes form an integrated continuum. Life is at work in a big way, and one may regard the biosphere as a laminar, highly activated global envelope, energized by solar radiation, modeling the terrestrial physiognomy, and catalyzing major geochemical reactions. There can be no doubt that the biota have exerted a profound influence on the development of our planet. The history of life and the earth is one of coevolution (Dubos 1979).

Type
Current Happenings
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Atlas, R. M. and Bartha, R. 1982. Microbial ecology: fundamentals and applications. Addison-Wesley, Reading, Mass.Google Scholar
Brock, T. D. 1979. Biology of microorganisms. 3d ed.Prentice-Hall, NJ.Google Scholar
Burns, R. G. and Slater, J. H. 1982. Experimental microbial ecology. Blackwell, Oxford.Google Scholar
Cameron, E. M. 1982. Sulphate and sulphate reduction in early precambrian oceans. Nature 296:145148.Google Scholar
Cloud, P. E. 1974. Evolution of ecosystems. Amer. Sci. 62:5466.Google Scholar
Dubos, R. 1979. Gaia and creative evolution. Nature 282:154155.Google Scholar
Ehrlich, H. L. 1981. Geomicrobiology. Marcel Dekker.Google Scholar
Fenchel, T. and Blackburn, T. H. 1979. Bacteria and mineral cycling. Academic Press, London.Google Scholar
Garrels, R. M. and Berner, R. A. 1983. The global carbonate-silicate sedimentary system—some feedback relations. In: Westbroek, and de Jong, 1983.Google Scholar
Garrels, R. M., Lerman, A., and MacKenzie, F. T. 1976. Controls of atmospheric O2 and CO2: past, present and future. Amer. Sci. 64:306315.Google Scholar
Garrels, R. M. and Perry, E. A. 1974. Cycling of carbon, sulphur and oxygen through geologic time. Pp. 303336. In: Goldberg, E. D. ed. The Sea, vol. 5. Wiley-Interscience, New York.Google Scholar
Hallberg, R. O., ed. 1983. Environmental Biogeochemistry. Ecol. Bull. Stockholm.Google Scholar
Holland, H. D. and Schidlowski, M., eds. 1982. Mineral deposits and the evolution of the biosphere. Springer, New York.Google Scholar
Krumbein, W. E., ed. 1978. Environmental biogeochemistry and geomicrobiology. 3 vols. Ann Arbor Science, Ann Arbor, Mich.Google Scholar
Krumbein, W. E., ed. 1983. Microbial geochemistry. Blackwell, Oxford.Google Scholar
Lovelock, J. E. 1979. Gaia, a new look at life on earth. Oxford University Press, Oxford and London.Google Scholar
Lovelock, J. E. 1983. Gaia as seen through the atmosphere. In: Westbroek, and de Jong, 1983.Google Scholar
Lovelock, J. E. and Whitfield, M. 1982. Life span of the biosphere. Nature 296:561.Google Scholar
Lowenstam, H. A. 1974. The impact of life on chemical and physical processes. In: Goldberg, E. D., ed. The Sea. Wiley-Interscience, New York.Google Scholar
Margulis, L. 1980. After Viking: life on Earth. The Sciences 20(9):2426.Google Scholar
Margulis, L. 1982. Early life. Science Books Inst., Boston.Google Scholar
Margulis, L. and Lovelock, J. E. 1983. Le petit monde des pâquerettes. Un modèle quantitatif de Gaïa. CoEvolution 11:4852.Google Scholar
Margulis, L. and Schwartz, K. V. 1982. Five kingdoms. An illustrated guide to the phyla of life on earth. Freeman, San Francisco.Google Scholar
Margulis, L. and Stolz, G. F. 1983. Microbial systematics and a Gaian view of the sediments. In: Westbroek, and De Jong, 1983.Google Scholar
Monty, C. 1979. Conséquences biosédimentologiques de l'évolution des écosystèmes. Pétrole et Techniques 260:311.Google Scholar
Shukla, J. and Minz, Y. 1982. Influence of land-surface evapotranspiration on the earth's climate. Science 215:14981501.Google Scholar
Stanier, R., Doudoroff, Y., and Adelberg, E. A. 1976. The microbial world. 4th ed.Prentice-Hall, NJ.Google Scholar
Starr, M. P. et al., eds. 1981. The prokaryotes. 2 vols., 2284 pp., Springer, Berlin.CrossRefGoogle Scholar
Trudinger, P. A. and Swaine, D. J. 1979. Biogeochemical cycling of mineral-forming sediments. Elsevier, Amsterdam.Google Scholar
Trudinger, P. A., Walter, M. R., and Ralph, B. J. 1980. Biogeochemistry of ancient and modern environments. Springer, Berlin.Google Scholar
Walker, J. C. G., Hays, P. B., and Kasting, J. E. 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res. 86:97769782.CrossRefGoogle Scholar
Watson, A. J. 1978. Consequences for the biosphere of grassland and forest fires. Reading University, thesis.Google Scholar
Westbroek, P. and de Jong, E. W., eds. 1983. Biomineralization and biological metal accumulation. Biological and geological perspectives. Reidel, Dordrecht and Boston.Google Scholar
Whitfield, M. and Watson, A. J. 1983. The influence of bio-mineralization on the composition of seawater. In: Westbroek, and De Jong, 1983.Google Scholar