Skip to main content Accessibility help

The inseparability of sampling and time and its influence on attempts to unify the molecular and fossil records

  • Melanie J. Hopkins (a1), David W. Bapst (a2), Carl Simpson (a3) and Rachel C. M. Warnock (a4)


The two major approaches to studying macroevolution in deep time are the fossil record and reconstructed relationships among extant taxa from molecular data. Results based on one approach sometimes conflict with those based on the other, with inconsistencies often attributed to inherent flaws of one (or the other) data source. Any contradiction between the molecular and fossil records represents a failure of our ability to understand the imperfections of our data, as both are limited reflections of the same evolutionary history. We therefore need to develop conceptual and mathematical models that jointly explain our observations in both records. Fortunately, the different limitations of each record provide an opportunity to test or calibrate the other, and new methodological developments leverage both records simultaneously. However, we must reckon with the distinct relationships between sampling and time in the fossil record and molecular phylogenies. These differences impact our recognition of baselines and the analytical incorporation of age estimate uncertainty.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The inseparability of sampling and time and its influence on attempts to unify the molecular and fossil records
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The inseparability of sampling and time and its influence on attempts to unify the molecular and fossil records
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The inseparability of sampling and time and its influence on attempts to unify the molecular and fossil records
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


Hide All
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C.. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.
Bapst, D. W. 2013. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods of Ecology and Evolution 4:724733.
Bapst, D. W. 2014. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40:331351.
Barbeitos, M. S., Romano, S. L., and Lasker, H. R.. 2010. Repeated loss of coloniality and symbiosis in scleractinian corals. Proceedings of the National Academy of Sciences USA 107:1187711882.
Bastide, P., Ané, C., Robin, S., and Mariadassou, M.. 2018. Inference of adaptive shifts for multivariate correlated traits. Systematic Biology. doi: 10.1093/sysbio/syy005.
Beaulieu, J. M., and O’Meara, B. C.. 2015. Extinction can be estimated from moderately sized molecular phylogenies. Evolution 69:10361043.
Briggs, D. E. G., Fortey, R. A., and Wills, M. A.. 1992. Morphological disparity in the Cambrian. Science 256:16701673.
Brocklehurst, N. 2015. A simulation-based examination of residual diversity estimates as a method for correcting sampling bias. Palaeontologia Electronica 18.3.7T. doi: 10.26879/584.
Chipman, A. D. 2015. An embryological perspective on the early arthropod fossil record. BMC Evolutionary Biology 15:118.
CoBabe, E. A., and Allmon, W. D.. 1994. Effects of sampling on paleoecologic and taphonomic analyses in high-diversity fossil accumulations: an example from the Eocene Gosport Sand, Alabama. Lethaia 27:167178.
Cooper, A., and Fortey, R.. 1998. Evolutionary explosions and the phylogenetic fuse. Trends in Ecology and Evolution 13:151156.
Crane, P. R., Herendeen, P., and Friis, E. M.. 2004. Fossils and plant phylogeny. American Journal of Botany 91:16831699.
Cuff, A. R., Randau, M., Head, J., Hutchinson, J. R., Pierce, S. E., and Goswami, A.. 2015. Big cat, small cat: reconstructing body size evolution in living and extinct Felidae. Journal of Evolutionary Biology 28:15161525.
Donoghue, M. J., Doyle, J. A., Gauthier, J., Kluge, A. G., and Rowe, T.. 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology, Evolution, and Systematics 20:431460.
Donoghue, P. C. J., and Yang, Z.. 2016. The evolution of methods for establishing evolutionary timescales. Philosophical Transactions of the Royal Society of London B 371:20160020. doi: 10.1098/rstb.2016.0020.
dos Reis, M., Inoue, J., Hasegawa, M., Asher, R. J., Donoghue, P. C. J., and Yang, Z.. 2012. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proceedings of the Royal Society of London B 279:34913500.
dos Reis, M., Thawornwattana, Y., Angelis, K., Telford, M. J., Donoghue, P. C. J., and Yang, Z.. 2015. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Current Biology 25:29392950.
Drummond, A. J., and Stadler, T.. 2016. Bayesian phylogenetic estimation of fossil ages. Philosophical Transactions of the Royal Society of London B 371:20150129. doi: 10.1098/rstb.2015.0129.
Dufresnes, C., Brelsford, A., Crnobrnja-Isailović, J., Tzankov, N., Lymberakis, P., and Perrin, N.. 2015. Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group). BMC Evolutionary Biology 15:155. doi: 10.1186/s12862-015-0385-2.
Dunhill, A. M., Bestwick, J., Narey, H., and Sciberras, J.. 2016. Dinosaur biogeographical structure and Mesozoic continental fragmentation: a network-based approach. Journal of Biogeography 43:16911704.
Edgecombe, G. D. 2010. Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Structure and Development 39:7487.
Edgecombe, G. D., and Legg, D. A.. 2013. The arthropod fossil record. Pp. 393415 in A. Minelli, G. Boxshall, and G. Fusco, eds. Arthropod biology and evolution: molecules, development, morphology. Springer, Berlin.
Eldredge, N., and Gould, S. J.. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115 in T. J. M. Schopf, ed. Models in paleobiology. Freeman, Cooper, San Francisco.
Eldredge, N., Thompson, J. N., Brakefield, P. M., Gavrilets, S., Jablonski, D., Jackson, J. B. C., Lenski, R. E., Lieberman, B. S., McPeek, M. A., and Miller, W. III. 2005. The dynamics of evolutionary stasis. In E. S. Vrba and N. Eldredge, eds. Macroevolution: diversity, disparity, contingency. Paleobiology 31(Suppl. to No. 2):133145.
Erwin, D. H., and Anstey, R. L.. 1995. Speciation in the fossil record. Pp. 1128 in D. H. Erwin, and R. L. Anstey, eds. New approaches to speciation in the fossil record. Columbia University Press, New York.
FitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution 3:10841092.
Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R. A., Henrissat, B., Martínez, A. T., Otillar, R., Spatafora, J. W., Yadav, J. S., Aerts, A., Benoit, I., Boyd, A., Carlson, A., Copeland, A., Coutinho, P. M., de Vries, R. P., Ferreira, P., Findley, K., Foster, B., Gaskell, J., Glotzer, D., Górecki, P., Heitman, J., Hesse, C., Hori, C., Igarashi, K., Jurgens, J. A., Kallen, N., Kersten, P., Kohler, A., Kües, U., Kumar, T. K. A., Kuo, A., LaButti, K., Larrondo, L. F., Lindquist, E., Ling, A., Lombard, V., Lucas, S., Lundell, T., Martin, R., McLaughlin, D. J., Morgenstern, I., Morin, E., Murat, C., Nagy, L. G., Nolan, M., Ohm, R. A., Patyshakuliyeva, A., Rokas, A., Ruiz-Dueñas, F. J., Sabat, G., Salamov, A., Samejima, M., Schmutz, J., Slot, J. C., John, F. St., Stenlid, J., Sun, H., Sun, S., Syed, K., Tsang, A., Wiebenga, A., Young, D., Pisabarro, A., Eastwood, D. C., Martin, F., Cullen, D., Grigoriev, I. V., and Hibbett, D. S.. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:17151719.
Foley, N. M., Springer, M. S., and Teeling, E. C.. 2016. Mammal madness: is the mammal tree of life not yet resolved? Philosophical Transactions of the Royal Society of London B 371:20150140. doi: 10.1098/rstb.2015.0140.
Foote, M. 1997. Estimating taxonomic durations and preservation probability. Paleobiology 23:278300.
Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J.. 1999. Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science 283:13101314.
Foote, M., Crampton, J. S., Beu, A. G., Marshall, B. A., Cooper, R. A., Maxwell, P. A., and Matcham, I.. 2007. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science 318:11311134.
Foote, M., Crampton, J. S., Beu, A. G., and Cooper, B. N.. 2008. On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology 34:421433.
Garwood, R. J., Sharma, P. P., Dunlop, J. A., and Giribet, G.. 2014. A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development. Current Biology 24:10171023.
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., and Behlke, A. D. B.. 2012. Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History 53:3308.
Gavryushkina, A., Welch, D., Stadler, T., and Drummond, A. J.. 2014. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Computational Biology 10:e1003919. doi: 10.1371/journal.pcbi.1003919.
Gavryushkina, A., Heath, T. A., Ksepka, D. T., Stadler, T., Welch, D., and Drummond, A. J.. 2017. Bayesian total evidence dating reveals the recent crown radiation of penguins. Systematic Biology 66:5773.
Geary, D. H. 1992. An unusual pattern of divergence between two fossil gastropods: ecophenotypy, dimorphism, or hybridization? Paleobiology 18:93109.
Gill, G. A., Santantonio, M., and Lathuiliere, B.. 2004. The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: an example from the Apennines. Sedimentary Geology 166:311334.
Giribet, G. 2015. Morphology should not be forgotten in the era of genomics—a phylogenetic perspective. Zoologischer Anzeiger 256:96103.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., eds. 2012. The geologic time scale 2012. Elsevier, Oxford, UK.
Hallam, A. 1998. Speciation patterns and trends in the fossil record. GeoBios 30:921930.
Hannisdal, B. 2006. Phenotypic evolution in the fossil record: numerical experiments. Journal of Geology 114:133153.
Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Jennings, W. B., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., Near, T. J., Purvis, A., Ricklefs, R. E., Schluter, D., Jr, J. A. Schulte., Seehausen, O., Sidlauskas, B., Torres-Carvajal, O., Weir, J. T., and Mooers, A. O.. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:23852396.
Hayek, L.-A. C., and Bura, E.. 2001. On the ends of the taxon range problem. Pp. 221244 in A. H. Cheetham, J. B. C. Jackson, S. Lidgard, and F. K. McKinney, eds. Evolutionary patterns: growth, form, and tempo in the fossil record. University of Chicago Press, Chicago.
Heath, T. A., Huelsenbeck, J. P., and Stadler, T.. 2014. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences USA 111:E2957E2966.
ermsen, E. J., and Hendricks, J. R.. 2008. W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences. Annals of the Missouri Botanical Garden 95:72100.
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.
Holland, S. M. 2000. The quality of the fossil record: a sequence stratigraphic perspective. In D. H. Erwin, and S. L. Wing, eds. Deep time: Paleobiology’s perspective. Paleobiology 26(Suppl. to No. 4):148168.
Holland, S. M. 2003. Confidence limits on fossil ranges that account for facies changes. Paleobiology 29:468479.
Holland, S. M. 2016. The non-uniformity of fossil preservation. Philosophical Transactions of the Royal Society of London B 371:20150130. doi: 10.1098/rstb.2015.0130.
Holland, S. M., and Patzkowsky, M. E.. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios 17:134146.
Hopkins, M. J., and Lidgard, S.. 2012. Evolutionary mode routinely varies among morphological traits within fossil species lineages. Proceedings of the National Academy of Sciences USA 109:2052020525.
Hopkins, M. J., and Smith, A. B.. 2015. Dynamic evolutionary change in post-Paleozoic echinoids, and the importance of scale when interpreting rates of evolution. Proceedings of the National Academy of Sciences USA 112:37583763.
Huang, D., Goldberg, E. E., and Roy, K.. 2015. Fossils, phylogenies, and the challenge of preserving evolutionary history in the face of anthropogenic extinctions. Proceedings of the National Academy of Sciences USA 112:49094914.
Hunt, G. 2007. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proceedings of the National Academy of Sciences USA 104:1840418408.
Hunt, G., and Slater, G. J.. 2016. Integrating paleontological and phylogenetic approaches to macroevolution. Annual Review of Ecology Evolution and Systematics 47:189213.
Hunt, G., Bell, M. A., and Travis, M. P.. 2008. Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62:700710.
Hunt, G., Hopkins, M. J., and Lidgard, S.. 2015. Simple versus complex models of trait evolution, and stasis as a response to environmental change. Proceedings of the National Academy of Sciences USA 112:48854890.
Jablonski, D. 2000. Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. In D. H. Erwin and S. L. Wing, eds. Deep time: Paleobiology’s perspective. Paleobiology 26(Suppl. to No. 4):1554.
Jackson, J. B. C., and Cheetham, A. H.. 1999. Tempo and mode of speciation in the sea. Trends in Ecology and Evolution 14:7277.
Kiessling, W., and Kocsis, Á. T.. 2015. Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals. Paleobiology 41:402414.
Kitahara, M. V., Cairns, S. D., Stolarksi, J., Blair, D., and Miller, D. J.. 2010. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS ONE 5:e11490. doi: 10.1371/journal.pone.0011490.
Kohler, A., Kuo, A., Nagy, L. G., Morin, E., Barry, K. W., Buscot, F., Canback, B., Choi, C., Cichocki, N., Clum, A., Colpaert, J., Copeland, A., Costa, M. D., Dore, J., Floudas, D., Gay, G., Girlanda, M., Henrissat, B., Herrmann, S., Hess, J., Hogberg, N., Johansson, T., Khouja, H.-R., LaButti, K., Lahrmann, U., Levasseur, A., Lindquist, E. A., Lipzen, A., Marmeisse, R., Martino, E., Murat, C., Ngan, C. Y., Nehls, U., Plett, J. M., Pringle, A., Ohm, R. A., Perotto, S., Peter, M., Riley, R., Rineau, F., Ruytinx, J., Salamov, A., Shah, F., Sun, H., Tarkka, M., Tritt, A., Veneault-Fourrey, C., Zuccaro, A., C. Mycorrhizal Genomics Initiative, Tunlid, A., Grigoriev, I. V., Hibbett, D. S., and Martin, F.. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics 47:410415.
Kostikova, A., Silvestro, D., Pearman, P. B., and Salamin, N.. 2016. Bridging inter- and intraspecific trait evolution with a hierarchical Bayesian approach. Systematic Biology 65:417431.
Landis, M. J. 2016. Biogeographic dating of speciation times using paleogeographically informed processes. Systematic Biology 66:128144.
Lee, M. S. Y., and Palci, A.. 2015. Morphological phylogenetics in the genomic age. Current Biology 25:R922R929.
Legg, D. A., Sutton, M. D., and Edgecombe, G. D.. 2013. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nature Communications 4:2485. doi: 10.1038/ncomms3485.
Leonardi, M., Librado, P., Der Sarkissian, C., Schubert, M., Alfarhan, A. H., Alquraishi, S. A., Al-Rasheid, K. A. S., Gamba, C., Willerslev, E., and Orlando, L.. 2017. Evolutionary patterns and processes: lessons from ancient DNA. Systematic Biology 66:e1e29.
Lidgard, S., and Hopkins, M. J.. 2015. “Stasis.” In J. B. Losos, ed. Oxford bibliographies on evolutionary biology. Oxford University Press, New York. doi: 10.1093/obo/9780199941728-0067.
Liow, L. H., and Stenseth, N. C.. 2007. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society of London B 274:27452752.
Liow, L. H., Quental, T. B., and Marshall, C. R.. 2010. When can decreasing diversification rates be detected with molecular phylogenies and the fossil record? Systematic Biology 59:646659.
Littlewood, D. T. J., and Smith, A. B.. 1995. A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata). Philosophical Transactions of the Royal Society of London B 347:213234.
Maddison, W. P., Midford, P. E., and Otto, S. P.. 2007. Estimating a binary character’s effect on speciation and extinction. Systematic Biology 56:701710.
Marie Curie Speciation Network. 2012. What do we need to know about speciation? Trends in Ecology and Evolution 27:2739.
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.
Marshall, C. R. 1997. Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons. Paleobiology 23:165173.
Mayr, G. 2004. Old world fossil record of modern-type hummingbirds. Science 304: 861864.
Minelli, A., Boxshall, G., and Fusco, G.. 2013. An introduction to the biology and evolution of arthropods. Pp. 115 in A. Minelli, G. Boxshall, and G. Fusco, eds. Arthropod biology and evolution: molecules, development, morphology. Springer, Berlin.
Mitchell, J. S., Etienne, R. S., and Rabosky, D. L.. 2018. Inferring diversification rate variation from phylogenies with fossils. Systematic Biology syy035. doi: 10.1093/sysbio/syy035.
Mounce, R. C. P., Sansom, R., and Wills, M. A.. 2016. Sampling diverse characters improves phylogenies: craniodental and postcranial characters of vertebrates often imply different trees. Evolution 70:666686.
Murdock, D. J., Gabbott, S. E., Mayer, G., and Purnell, M. A.. 2014. Decay of velvet worms (Onychophora), and bias in the fossil record of lobopodians. BMC Evolutionary Biology 14:222. doi: 10.1186/s12862-014-0222-z.
Murdock, D. J. E., Gabbott, S. E., and Purnell, M. A.. 2016. The impact of taphonomic data on phylogenetic resolution: Helenodora inopinata (Carboniferous, Mazon Creek Lagerstätte) and the onychophoran stem lineage. BMC Evolutionary Biology 16:19. doi: 10.1186/s12862-016-0582-7.
Nelsen, M. P., DiMichele, W. A., Peters, S. E., and Boyce, C. K.. 2016. Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proceedings of the National Academy of Sciences USA 113:24422447.
Nordbotten, J. M., and Stenseth, N. C.. 2016. Asymmetric ecological conditions favor Red-Queen type of continued evolution over stasis. Proceedings of the National Academy of Sciences USA 113:18471852.
Nowak, M. D., Smith, A. B., Simpson, C., and Zwickl, D. J.. 2013. A simple method for estimating informative node age priors for the fossil calibration of molecular divergence time analyses. PLoS ONE 8:e66245. doi: 10.1371/journal.pone.0066245.
Patzkowsky, M. E., and Holland, S. M.. 2012. Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.
Pauly, D. 1995. Anecdotes and the shifting baseline syndrome of fisheries. Trends in Ecology and Evolution 10:430.
Pennell, M. W., Harmon, L. J., and Uyeda, J. C.. 2014. Is there room for punctuated equilibrium in macroevolution? Trends in Ecology and Evolution 29:2332.
Peters, S. E., and Foote, M.. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.
Phillimore, A. B., and Price, T. D.. 2008. Density-dependent cladogenesis in birds. PLoS Biology 6:e71. doi: 10.1371/journal.pbio.0060071.
Puttick, M. N. 2018. Mixed evidence for early bursts of morphological evolution in extant clades. Journal of Evolutionary Biology. doi: 10.1111/jeb.13236.
Pybus, O. G., and Harvey, P. H.. 2000. Testing macro–evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society of London B 267:22672272.
Pyron, R. A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic Biology 60:466481.
Rabosky, D. L. 2010. Extintion rates should not be estimated from molecular phylogenies. Evolution 64:18161824.
Rabosky, D. L. 2016. Challenges in the estimation of extinction from molecular phylogenies: a response to Beaulieu and O’Meara. Evolution 70:218228.
Raj Pant, S., Goswami, A., and Finarelli, J.. 2014. Complex body size trends in the evolution of sloths (Xenarthra: Pilosa). BMC Evolutionary Biology 14:184. doi: 10.1186/s12862-014-0184-1.
Raup, D. M. 1972. Taxonomic diversity during the phanerozoic. Science 177:10651071.
Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L., and Rasnitsyn, A. P.. 2012. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61:973999.
Sadler, P. M. 2004. Quantitative biostratigraphy-achieving finer resolution in global correlation. Annual Review of Earth and Planetary Sciences 32:187213.
Sadler, P. M., Cooper, R. A., and Melchin, M.. 2009. High-resolution, early Paleozoic (Ordovocian–Silurian) time scales. Geological Society of America Bulletin 121:887906.
Sansom, R. S. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology 64:256266.
Sansom, R. S., and Wills, M. A.. 2013. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Scientific Reports 3:2545.
Sansom, R. S., Gabbott, S. E., and Purnell, M. A.. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature 463:797800.
Sansom, R. S., Gabbott, S. E., and Purnell, M. A. 2013. Atlas of vertebrate decay: a visual and taphonomic guide to fossil interpretation. Palaeontology 56:457474.
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.
Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A., and Salamin, N.. 2014. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Systematic Biology 63:349367.
Silvestro, D., Zizka, A., Bacon, C. D., Cascales-Miñana, B., Salamin, N., and Antonelli, A.. 2016. Fossil biogeography: a new model to infer dispersal, extinction and sampling from palaeontological data. Philosophical Transactions of Royal Society of London B 371:20150225. doi: 10.1098/rstb.2015.0225.
Simpson, C. 2013. Species selection and the macroevolution of coral coloniality and photosymbiosis. Evolution 67:16071621.
Simpson, C., Kiessling, W., Mewis, H., Baron-Szabo, R. C., and Müller, J.. 2011. Evolutionary diversification of reef corals: a comparison of the molecular and fossil records. Evolution 65:32743284.
Slater, G. J. 2013. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous–Palaeogene boundary. Methods in Ecology and Evolution 4:734744.
Slater, G. J. 2014. Correction to “Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous–Palaeogene boundary,” and a note on fitting macroevolutionary models to comparative paleontological data sets. Methods in Ecology and Evolution 5:714718.
Slater, G. J. 2015. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution. Proceedings of the National Academy of Sciences USA 112:48974902.
Slater, G. J., and Pennell, M. W.. 2014. Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution. Systematic Biology 63:293308.
Slater, G. J., Harmon, L. J., and Alfaro, M. E.. 2012. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution 66:39313944.
Smith, A. B. 2001. Large–scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.
Smith, D. M., and Marcot, J. D.. 2015. The fossil record and macroevolutionary history of the beetles. Proceedings of the Royal Society of London B 282:20150060. doi: 10.1098/rspb.2015.0060.
Smith, A. B., and McGowan, A. J.. 2007. The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of western Europe? Palaeontology 50:765774.
Springer, M. S., Teeling, E. C., Madsen, O., Stanhope, M. J., and de Jong, W. W.. 2001. Integrated fossil and molecular data reconstruct bat echolocation. Proceedings of the National Academy of Sciences USA 98:62416246.
Stadler, T. 2010. Sampling-through-time in birth–death trees. Journal of Theoretical Biology 267:396404.
Stadler, T., Gavryushkina, A., Warnock, R. C. M., Drummond, A. J., and Heath, T. A.. 2018. The fossilized birth-death model for the analysis of stratigraphic range data under different speciation concepts. Journal of Theoretical Biology 447:4155.
Stanley, G. D. Jr., and Cairns, S. D.. 1988. Constructional azooxanthellate coral communities: an overview with implications for the fossil record. Palaios 3:233242.
Starrfelt, J., and Liow, L. H.. 2016. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model. Philosophical Transactions of the Royal Society of London B 371:20150219. doi: 10.1098/rstb.2015.0219.
Strauss, D., and Sadler, P. M.. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:411427.
Sutton, M., Perales-Raya, C., and Gilbert, I.. 2015. A phylogeny of fossil and living neocoleoid cephalopods. Cladistics 32:297307.
Tweedt, S. M., and Erwin, D. H.. 2015. Origin of metazoan developmental toolkits and their expression in the fossil record. Pp. 4777 in I. Ruiz-Trillo, and A. M. Nedelcu, eds. Evolutionary transitions to multicellular life: principles and mechanisms. Springer Netherlands, Dordrecht.
Wagner, P. J., and Marcot, J. D.. 2013. Modelling distributions of fossil sampling rates over time, space and taxa: assessment and implications for macroevolutionary studies. Methods in Ecology and Evolution 4:703713.
Wang, S. C., and Marshall, C. R.. 2016. Estimating times of extinction in the fossil record. Biology Letters 12:20150989. doi: 10.1098/rsbl.2015.0989.
Wang, S. C., Everson, P. J., Zhou, H. J., Park, D., and Chudzicki, D. J.. 2016. Adaptive credible intervals on stratigraphic ranges when recovery potential is unknown. Paleobiology 42:240256.
Weiss, R. E., and Marshall, C. R.. 1999. The uncertainty in the true end point of a fossil’s stratigraphic range when stratigraphic sections are sampled discretely. Mathematical Geology 31:435453.
Wendler, I., Willems, H., Gräfe, K.-U., Ding, L., and Luo, H.. 2011. Upper Cretaceous inter-hemispheric correlation between the Southern Tethys and the Boreal: chemo- and biostratigraphy and paleoclimatic reconstructions from a new section in the Tethys Himalaya, S-Tibet. Newsletters on Stratigraphy 44:137171.
Wilkinson, R. D., Steiper, M. E., Soligo, C., Martin, R. D., Yang, Z., and Tavaré, S.. 2011. Dating primate divergences through an integrated analysis of palaeontological and molecular data. Systematic Biology 60:1631.
Wills, M. A. 1998. Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biological Journal of the Linnean Society 65:455500.
Wright, A. M. 2017. Editor’s note on “Putting Fossils in Trees” special issue. Biology Letters 13:20170103. doi: 10.1098/rsbl.2017.0103.
Wright, A. M., Lloyd, G. T., and Hillis, D. M.. 2016. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Systematic Biology 65:602611.
Yang, J., Ortega-Hernández, J., Butterfield, N. J., Liu, Y., Boyan, G. S., Hou, J.-b., Lan, T., and Zhang., X.-g. 2016. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda. Proceedings of the National Academy of Sciences USA 113:29882993.
Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A., and Ronquist, F.. 2016. Total-evidence dating under the fossilized birth–death process. Systematic Biology 65:228249.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed