Skip to main content Accessibility help

A framework for the integrated analysis of the magnitude, selectivity, and biotic effects of extinction and origination

  • Andrew M. Bush (a1), Steve C. Wang (a2), Jonathan L. Payne (a3) and Noel A. Heim (a4)


The taxonomic and ecologic composition of Earth's biota has shifted dramatically through geologic time, with some clades going extinct while others diversified. Here, we derive a metric that quantifies the change in biotic composition due to extinction or origination and show that it equals the product of extinction/origination magnitude and selectivity (variation in magnitude among groups). We also define metrics that describe the extent to which a recovery (1) reinforced or reversed the effects of extinction on biotic composition and (2) changed composition in ways uncorrelated with the extinction. To demonstrate the approach, we analyzed an updated compilation of stratigraphic ranges of marine animal genera. We show that mass extinctions were not more selective than background intervals at the phylum level; rather, they tended to drive greater taxonomic change due to their higher magnitudes. Mass extinctions did not represent a separate class of events with respect to either strength of selectivity or effect. Similar observations apply to origination during recoveries from mass extinctions, and on average, extinction and origination were similarly selective and drove similar amounts of biotic change. Elevated origination during recoveries drove bursts of compositional change that varied considerably in effect. In some cases, origination partially reversed the effects of extinction, returning the biota toward the pre-extinction composition; in others, it reinforced the effects of the extinction, magnifying biotic change. Recoveries were as important as extinction events in shaping the marine biota, and their selectivity deserves systematic study alongside that of extinction.



Hide All

Data available from the Dryad Digital Repository:



Hide All
Alegret, L., Thomas, E., and Lohmann, K. C.. 2012. End-Cretaceous marine mass extinction not caused by productivity collapse. Proceedings of the National Academy of Sciences USA 109:728732.
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.
Alroy, J. 2004. Are Sepkoski's evolutionary faunas dynamically coherent? Evolutionary Ecology Research 6:132.
Alroy, J. 2008. Dynamics of origination and extinction in the fossil record. Proceedings of the National Academy of Sciences USA 105:1153611542.
Alroy, J. 2014. Accurate and precise estimates of origination and extinction rates. Paleobiology 40:374397.
Alroy, J. 2015. A more precise speciation and extinction rate estimator. Paleobiology 41:633639.
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34:127–55.
Bambach, R. K., Knoll, A. H., and Wang, S. C.. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.
Becker, R. T., Kaiser, S. I., and Aretz, M.. 2016. Review of chrono-, litho- and biostratigraphy across the global Hangenberg Crisis and Devonian–Carboniferous boundary. In Becker, R. T., Königshof, P., and Brett, C. E., eds. Devonian climate, sea level and evolutionary events. Geological Society of London Special Publication 423:355386.
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.
Bland, J. M., and Altman, D. G.. 2011. Correlation in restricted ranges of data. BMJ 342:d556.
Bond, D. P., and Wignall, P. B.. 2008. The role of sea-level change and marine anoxia in the Frasnian–Famennian (Late Devonian) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 263:107118.
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., Galfetti, T., and Guex, J.. 2009. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:11181121.
Bush, A. M., and Bambach, R. K.. 2011. Paleoecologic megatrends in marine Metazoa. Annual Review of Earth and Planetary Sciences 39:241269.
Bush, A. M., and Brame, R. I.. 2010. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiology 36:573591.
Bush, A. M., and Pruss, S. B.. 2013. Theoretical ecospace for ecosystem paleobiology: energy, nutrients, biominerals, and macroevolution. In Bush, A. M., Pruss, S. B., and Payne, J. L., eds. Ecosystem paleobiology and geobiology. Paleontological Society Papers 19:120.
Bush, A. M., Bambach, R. K., and Daley, G. M.. 2007. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:7697.
Bush, A. M., Csonka, J. D., DiRenzo, G. V., Over, D. J., and Beard, J. A.. 2015. Revised correlation of the Frasnian-Famennian boundary and Kellwasser events (Upper Devonian) in shallow marine paleoenvironments of New York State. Palaeogeography, Palaeoclimatology, Palaeoecology 433:233246.
Chen, Z.-Q., and Benton, M. J.. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience 5:375.
Christie, M., Holland, S. M., and Bush, A. M.. 2013. Contrasting the ecological and taxonomic consequences of extinction. Paleobiology 39:538559.
Clapham, M. E. 2015. Ecological consequences of the Guadalupian extinction and its role in the brachiopod-mollusk transition. Paleobiology 41:266279.
Clapham, M. E. 2017. Organism activity levels predict marine invertebrate survival during ancient global change extinctions. Global Change Biology 23:14771485.
Clapham, M. E., and Payne, J. L.. 2011. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39:10591062.
Clarke, K. R., and Warwick, R. M.. 2001. Change in marine communities: an approach to statistical analysis and interpretation. Primer-E, Plymouth, U.K.
Clarkson, M., Kasemann, S., Wood, R., Lenton, T., Daines, S., Richoz, S., Ohnemueller, F., Meixner, A., Poulton, S., and Tipper, E.. 2015. Ocean acidification and the Permo-Triassic mass extinction. Science 348:229232.
Congreve, C. R., Krug, A. Z., and Patzkowsky, M. E.. 2018. Evolutionary and biogeographical shifts in response to the Late Ordovician mass extinction. Palaeontology 62:267285.
Copper, P. 2002. Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 181:2765.
Dineen, A. A., Fraiser, M. L., and Sheehan, P. M.. 2014. Quantifying functional diversity in pre-and post-extinction paleocommunities: a test of ecological restructuring after the end-Permian mass extinction. Earth-Science Reviews 136:339349.
Droser, M. L., Bottjer, D. J., Sheehan, P. M., and McGhee, G. R. Jr. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28:675678.
Erwin, D. H., and Hua-Zhang, P.. 1996. Recoveries and radiations: gastropods after the Permo-Triassic mass extinction. In Hart, M. B., ed. Biotic recovery from mass extinction events. Geological Society of London Special Publication 102:223229.
Faith, D. P., Minchin, P. R., and Belbin, L.. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:5768.
Finnegan, S., Heim, N. A., Peters, S. E., and Fischer, W. W.. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:68296834.
Finnegan, S., Rasmussen, C. M. Ø., and Harper, D. A. T.. 2016. Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction. Proceedings of the Royal Society of London B 283:20160007.
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25:1115.
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74102.
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.
Foote, M. 2007. Extinction and quiescence in marine animal genera. Paleobiology 33:261272.
Foote, M. 2010. The geological history of biodiversity. Pp. 479510in Bell, M. A., Futuyma, D. J., Eanes, W. F., and Levinton, J. S., eds. Evolution since Darwin: the first 150 years. Sinauer, Sunderland, Mass.
Foster, W. J., and Twitchett, R. J.. 2014. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nature Geoscience 7:233238.
Friedman, M. 2009. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proceedings of the National Academy of Sciences USA 106:52185223.
Galfetti, T., Hochuli, P. A., Brayard, A., Bucher, H., Weissert, H., and Vigran, J. O.. 2007. Smithian–Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35:291294.
Gilinksy, N. L. 1994. Volatility and the Phanerozoic decline of background extinction intensity. Paleobiology 20:445458.
Gould, S. J. 1984. Smooth curve of evolutionary rate: a psychological and mathematical artifact. Science 226:994995.
Harnik, P. G. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:1359413599.
Harnik, P. G., Simpson, C., and Payne, J. L.. 2012. Long-term differences in extinction risk among the seven forms of rarity. Proceedings of the Royal Society of London B 279:49694976.
Heim, N. A., and Peters, S. E.. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:e18946.
Heim, N. A., Knope, M. L., Schaal, E. K., Wang, S. C., and Payne, J. L.. 2015. Cope's rule in the evolution of marine animals. Science 347:867870.
Henehan, M. J., Hull, P. M., Penman, D. E., Rae, J. W., and Schmidt, D. N.. 2016. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Philosophical Transactions of the Royal Society of London B 371:20150510.
Hull, P. 2015. Life in the aftermath of mass extinctions. Current Biology 25:R941R952.
Hull, P. M., Norris, R. D., Bralower, T. J., and Schueth, J. D.. 2011. A role for chance in marine recovery from the end-Cretaceous extinction. Nature Geoscience 4:856860.
Hull, P. M., Darroch, S. A., and Erwin, D. H.. 2015. Rarity in mass extinctions and the future of ecosystems. Nature 528:345351.
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.
Jablonski, D., and Raup, D. M.. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.
Janevski, G. A., and Baumiller, T. K.. 2009. Evidence for extinction selectivity throughout the marine invertebrate fossil record. Paleobiology 35:553564.
Joachimski, M. M., and Buggisch, W.. 2002. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30:711714.
Kiessling, W., and Aberhan, M.. 2007. Geographical distribution and extinction risk: lessons from Triassic–Jurassic marine benthic organisms. Journal of Biogeography 34:14731489.
Kiessling, W., and Simpson, C.. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology 17:5667.
Kitchell, J. A., Clark, D. L., and Gombos, A. M. Jr. 1986. Biological selectivity of extinction: a link between background and mass extinction. Palaios 1:504511.
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P.. 1996. Comparative Earth history and Late Permian mass extinction. Science 273 452457.
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W.. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.
Krug, A. Z., and Patzkowsky, M. E.. 2015. Phylogenetic clustering of origination and extinction across the Late Ordovician mass extinction. PLoS ONE 10:e0144354.
Legendre, P., and Legendre, L.. 2012. Numerical ecology, 3rd ed. Elsevier, Amsterdam.
Leighton, L. R., and Schneider, C. L.. 2008. Taxon characteristics that promote survivorship through the Permian–Triassic interval: transition from the Paleozoic to the Mesozoic brachiopod fauna. Paleobiology 34:6578.
Lockwood, R. 2003. Abundance not linked to survival across the end-Cretaceous mass extinction: patterns in North American bivalves. Proceedings of the National Academy of Sciences USA 100:24782482.
Lockwood, R. 2004. The K/T event and infaunality: morphological and ecological patterns of extinction and recovery in veneroid bivalves. Paleobiology 30:507521.
Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31:578590.
Ma, X., Gong, Y., Chen, D., Racki, G., Chen, X., and Liao, W.. 2015. The Late Devonian Frasnian–Famennian Event in South China—patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeography, Palaeoclimatology, Palaeoecology 448:121.
Marynowski, L., Zatoń, M., Rakociński, M., Filipiak, P., Kurkiewicz, S., and Pearce, T. J.. 2012. Deciphering the upper Famennian Hangenberg black shale depositional environments based on multi-proxy record. Palaeogeography, Palaeoclimatology, Palaeoecology 346:6686.
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., and Droser, M. L.. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211:289297.
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., and Droser, M. L.. 2012. Ecological ranking of Phanerozoic biodiversity crises: the Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician. Geology 40:147150.
McKinney, M. L. 1987. Taxonomic selectivity and continuous variation in mass and background extinctions of marine taxa. Nature 325:143145.
Newell, N. D. 1967. Revolutions in the history of life. In Albritton, J. C. C. Jr., ed. Uniformity and simplicity: a symposium on the principle of the uniformity of nature. Geological Society of America Special Paper 89:6391.
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:273294.
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.
Payne, J. L., and van de Schootbrugge, B.. 2007. Life in Triassic oceans: links between planktonic and benthic recovery and radiation. Pp. 165189in Falkowski, P. G., and Knoll, A. H., eds. Evolution of primary producers in the sea. Academic Press, Burlington, Mass.
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P., and Knoll, A. H.. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506509.
Payne, J. L., Bush, A. M., Chang, E. T., Heim, N. A., Knope, M. L., and Pruss, S. B.. 2016a. Extinction intensity, selectivity, and their combined macroevolutionary influence in the fossil record. Biology Letters 12:20160202.
Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L., and McCauley, D. J.. 2016b. Ecological selectivity of the emerging mass extinction in the oceans. Science 353:12841286.
Penn, J. L., Deutsch, C., Payne, J. L., and Sperling, E. A.. 2018. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362:eaat1327.
Petsios, E., Thompson, J. R., Pietsch, C., and Bottjer, D. J.. 2019. Biotic impacts of temperature before, during, and after the end-Permian extinction: a multi-metric and multi-scale approach to modeling extinction and recovery dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 513:8699.
Pietsch, C., Ritterbush, K. A., Thompson, J. R., Petsios, E., and Bottjer, D. J.. 2019. Evolutionary models in the Early Triassic marine realm. Palaeogeography, Palaeoclimatology, Palaeoecology 513:6585.
Powell, M. G. 2008. Timing and selectivity of the Late Mississippian mass extinction of brachiopod genera from the central Appalachian Basin. Palaios 23:525534.
Powell, M. G., and MacGregor, J.. 2011. A geographic test of species selection using planktonic foraminifera during the Cretaceous/Paleogene mass extinction. Paleobiology 37:426437.
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.
Reddin, C. J., Kocsis, Á. T., and Kiessling, W.. 2019. Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology 45:7084.
Rivadeneira, M. M., and Marquet, P. A.. 2007. Selective extinction of late Neogene bivalves on the temperate Pacific coast of South America. Paleobiology 33:455468.
Romano, C., Goudemand, N., Vennemann, T. W., Ware, D., Schneebeli-Hermann, E., Hochuli, P. A., Brühwiler, T., Brinkmann, W., and Bucher, H.. 2013. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience 6:5760.
Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., and Hertog, R.. 2007. Trophic network models explain instability of Early Triassic terrestrial communities. Proceedings of the Royal Society of London B 274:20772086.
Sallan, L. C., and Coates, M. I.. 2010. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proceedings of the National Academy of Sciences USA 107:1013110135.
Sallan, L. C., Kammer, T. W., Ausich, W. I., and Cook, L. A.. 2011. Persistent predator–prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences USA 108:83358338.
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1560.
Silverman, B. W. 1981. Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society, Series B 43:9799.
Smith, A. B., and Jeffery, C. H.. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:6971.
Solé, R. V., Montoya, J. M., and Erwin, D. H.. 2002. Recovery after mass extinction: evolutionary assembly in large–scale biosphere dynamics. Philosophical Transactions of the Royal Society of London B 357:697707.
Song, H., Wignall, P. B., Tong, J., and Yin, H.. 2013. Two pulses of extinction during the Permian–Triassic crisis. Nature Geoscience 6:52.
Song, H., Wignall, P. B., Chu, D., Tong, J., Sun, Y., Song, H., He, W., and Tian, L.. 2014. Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Scientific Reports 4:4132.
Stanley, S. M. 1979. Macroevolution: pattern and process. Freeman, San Francisco.
Stanley, S. M. 2007. An analysis of the history of marine animal diversity. Paleobiology Memoirs 4:155.
Stanley, S. M. 2016. Estimates of the magnitudes of major marine mass extinctions in earth history. Proceedings of the National Academy of Sciences USA 113:E6325E6334.
Stigall, A. L. 2012. Speciation collapse and invasive species dynamics during the Late Devonian “mass extinction.” GSA Today 22:49.
Vilhena, D. A., Harris, E. B., Bergstrom, C. T., Maliska, M. E., Ward, P. D., Sidor, C. A., Strömberg, C. A. E., and Wilson, G. P.. 2013. Bivalve network reveals latitudinal selectivity gradient at the end-Cretaceous mass extinction. Scientific Reports 3:1790.
Wang, S. C. 2003. On the continuity of background and mass extinction. Paleobiology 29:455467.
Wang, S. C. 2010. Principles of statistical inference: likelihood and the Bayesian paradigm. In Alroy, J. and Hunt, G., eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:118.
Wignall, P., and Benton, M.. 1999. Lazarus taxa and fossil abundance at times of biotic crisis. Journal of the Geological Society 156:453456.

Related content

Powered by UNSILO

A framework for the integrated analysis of the magnitude, selectivity, and biotic effects of extinction and origination

  • Andrew M. Bush (a1), Steve C. Wang (a2), Jonathan L. Payne (a3) and Noel A. Heim (a4)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.