Skip to main content Accessibility help
×
Home

Fossils, homology, and “Phylogenetic Paleo-ontogeny”: a reassessment of primary posterior plate homologies among fossil and living crinoids with insights from developmental biology

  • David F. Wright (a1)

Abstract

Paleobiologists must propose a priori hypotheses of homology when conducting a phylogenetic analysis of extinct taxa. The distributions of such “primary” homologies among species are fundamental to phylogeny reconstruction because they reflect a prior belief in what constitutes comparable organismal elements and are the principal determinants of the outcome of phylogenetic analysis. Problems arise when fossil morphology presents seemingly equivocal hypotheses of homology, herein referred to as antinomies. In groups where homology recognition has been elusive, such as echinoderms, these problems are commonly accompanied by the presence (and persistence) of poor descriptive terminology in taxonomic literature that confounds an understanding of characters and stymy phylogenetic research. This paper combines fossil morphology, phylogenetic systematics, and insights from evolutionary developmental biology to outline a research program in Phylogenetic Paleo-ontogeny. A “paleo” ontogenetic approach to character analysis provides a logical basis for homology recognition and discerning patterns of character evolution in a phylogenetic context. To illustrate the utility of the paleo-ontogenetic approach, I present a reassessment of historically contentious plate homologies for “pan-cladid” crinoids (Cladida, Flexibilia, Articulata). Developmental patterns in living crinoids were combined with the fossil record of pan-cladid morphologies to investigate primary posterior plate homologies. Results suggest the sequence of morphologic transitions unfolding during the ontogeny of extant crinoids are developmental relics of their Paleozoic precursors. Developmental genetic modules controlling posterior plate development in pan-cladid crinoids have likely experienced considerable constraint for over 250 million years and limited morphologic diversity in the complexity of calyx characters. Future phylogenetic analyses of pan-cladids are recommended to consider the presence of a single plate in the posterior region homologous with the radianal, rather than the anal X, as is commonly assumed.

Copyright

References

Hide All
Abzhanov, A. 2013. von Baer’s law for the ages: lost and found principles of developmental evolution. Trends in Genetics 29:712722.
Alroy, J. 2010. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.
Amemiya, S. A. Omori, Tsurugaya, T., Hibino, T., Yamaguchi, M., Kuraishi, R., Kiyomoto, M., and Minokawa, T.. 2014. Early stalked stages in ontogeny of the living isocrinid sea lily Metacrinus rotundus. Acta Zoologica. doi: 10.1111/azo.12109.
Arnone, M. I., and Davidson, D. H.. 1997. The hardwiring of development: organization and function of genomic regulatory systems. Development 124:18511864.
Ausich, W. I. 1996. Crinoid plate circlet homologies. Journal of Paleontology 70:955964.
Ausich, W. I 1998. Phylogeny of Arenig to Caradoc crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea. University of Kansas Paleontological Contributions 9:136.
Ausich, W. I., Kammer, T. W., and Baumiller, T. K.. 1994. Demise of the Middle Paleozoic Crinoid Fauna: a single extinction event or rapid faunal turnover? Paleobiology 20:345361.
Ausich, W. I., Kammer, T. W., Wright, D. F., Cole, S. R., Peter, M. E. and Rhenberg, E. C.. 2015. Toward a phylogenetic classification of the Crinoidea (Echinodermata). Pp. 29–32 in S. Zamora and I. Rábano, eds. Progress in Echinoderm Paleobiology. Cuadernos del museo Geominero, 19, Instituto Geológico y Minero de España, 292 pp.
Bapst, D. W. 2012. When can clades be potentially resolved with morphology? PLoS One 8:e62312. doi:10.1371/journal.pone.0062312.
Bapst, D. W 2014. Assessing the effect of time-scaling on phylogeny-based analyses in the fossil record. Paleobiology 40:331351.
Bateson, W. 1894. Materials for the study of variation. MacMillan, London.
Bather, F. A. 1890. British fossil crinoids: The classification of the Inadunata Fistulata. Annals and Magazine of Natural History 5:373788.
Bather, F. A 1891. Some alleged cases of misrepresentation. Annals and Magazine of Natural History 6:480489.
Bather, F. A 1918. The homologies of the anal plate in Atedon. Annals and Magazine of Natural History 9:294302.
Bolker, J. A., and Raff, R. A.. 1996. Developmental genetics and traditional homology. Bioessays 18:489491.
Breimer, A. 1978. General morphology, recent crinoids. Pp. T9T58in R. C. Moore, and C. Teichert, eds. Treatise on Invertebrate Paleontology. Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.
Brigandt, I. 2003. Homology in comparative, molecular, and evolutionary developmental biology: the radiation of a concept. Journal of Experimental Zoology 299b:917.
Brower, J. C. 1978. Camerates. Pp. T244T263in R. C. Moore, and C. Teichert, eds. Treatise on Invertebrate Paleontology. Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.
Brower, J. C 1995. Dendrocrinid crinoids from the Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology 69:939960.
Brusca, R. C., and Brusca, G. J.. 2003. Invertebrates, (2nd edition). Sinauer Associates, Sunderland.
Bryant, H. N. 1989. An evaluation of cladistics and character analyses as hypothetico-deductive procedures and the consequences for character weighting. Systematic Biology 38:214227.
Carpenter, P. H. 1882. On the relations of Hybocrinus, Baerocrinus, and Hybocystites. Quarterly Journal of the Geological Society of London 38:298312.
Carpenter, P. H 1884. Report on the Crinoidea—the stalked crinoids. Report on the scientific results of the H. M. S. Challenger. Zoology 11:1440.
Carpenter, W. B. 1866. Researches on the structure, physiology and development of Antedon (Comatula) rosaceus. Philosophical Transactions of the Royal Society of London 156:671756.
Carroll, S. B. 2008. Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:2536.
Clark, A. H. 1915. A monograph of the existing crinoids. Bulletin of the United States National Museum 32, part 2.
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J. X.. 2013. The ICS International Chronostratigraphic Chart. Episodes 36:199204.
Darwin, C. 1859. On the origin of species by means of natural selection. Murray, London.
David, B. B. Lefebvre, Mooi, R., and Parsley, R. L.. 2000. Are homalozoans echinoderms? An answer from extraxial-axial theory. Paleobiology 26:529555.
Erwin, D. E. 2007. Disparity: morphological pattern and development. Palaeontology 50:5773.
Erwin, D. E., and Davidson, E. H.. 2009. The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics 10:141148.
de Pinna, M. G. G. 1991. Concepts and tests of homology in the cladistics paradigm. Cladistics 7:387394.
Eldredge, N., and Gould, S. J.. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115in T. J. M. Schopf, ed. Models in Paleobiology. Freeman, Cooper and Company, San Fransisco.
Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences 89:73257329.
Foote, M 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.
Foote, M 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25:1115.
Foote, M., and Raup, D. M.. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.
Gahn, F. J., and Kammer, T. W.. 2002. The cladid crinoid Barycrinus from the Burlington Limestone (early Osagean) and the phylogenetics of Mississippian botryocrinids. Journal of Paleontology 76:123133.
Garstang, W. 1921. The theory of Recapitulation: a critical re-statement of the biogenic law. Journal of the Linnaean Society of London 35:81101.
Gilbert, S. F., and Bolker, J. A.. 2001. Homologies of process and modular elements of embryonic construction. Pp. 437456in G. P. Wagner, ed. The Character Concept in Evolutionary Biology. Academic Press, London.
Gould, S. J. 1973. Systematic pluralism and the uses of history. Systematic Zoology 22:322324.
Gould, S. J 1977. Ontogeny and Phylogeny. Belknap Press of Harvard University Press, Cambridge.
Gould, S. J 1989. Wonderful Life: the Burgess Shale and the nature of history. Norton, New York.
Guensburg, T. E., and Sprinkle, J.. 2009. Solving the mystery of crinoid ancestry: new fossil evidence of arm origin and development. Journal of Paleontology 83:350364.
Haeckel, E. 1866. Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. Georg Reimer, Berlin.
Hall, B. K. 2002. Palaeontology and evolutionary developmental biology: a science of the nineteenth and twenty-first centuries. Palaeontology 45:647669.
Hall, B. K 2003. Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biology Reviews 78:409433.
Hara, Y., Yamaguchi, M., Akasaka, K., Nakano, H., Nonaka, M., and Amemiya, S.. 2006. Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Development Genes and Evolution 216:797809.
Harnik, P. G., Fitzgerald, P. C., Payne, J. L., and Carson, S. J.. 2014. Phylogenetic signal in extinction selectivity in Devonian terebratulide brachiopods. Paleobiology 40:679692.
Hendricks, J. R., Saupe, E. E., Myers, C. E., Hermsen, E. J., and Allmon, W. D.. 2014. The generification of the fossil record. Paleobiology 40:511528.
Hennig, W. 1966. Phylogenetic systematics. University of Illinois Press, Urbana.
Hyman, L. 1955. The Invertebrates, Vol. 5. Phylum Echinodermata. McGraw-Hill, New York.
Kammer, T. W. 2008. Paedomorphosis as an adaptive response in pinnulate cladid crinoids from the Burlington Limestone (Mississippian, Osagean) of the Mississippi Valley. Pp. 177195in W. I. Ausich, and G. D. Webster, eds. Echinoderm Paleobiology. University of Indiana Press, Bloomington.
Kammer, T. W., and Ausich, W. I.. 1996. Primitive cladid crinoids from Upper Osagean-Lower Meramecian (Mississippian) rocks of east-central United States. Journal of Paleontology 70:835866.
Kammer, T. W., and Ausich, W. I.. 2006. The “age of crinoids”: a Mississippian biodiversity spike coincident with widespread carbonate ramps. Palaios 21:238248.
Kammer, T. W., and Ausich, W. I.. 2007. New cladid and flexible crinoids from the Mississippian (Tournaisian, Ivorian) of England and Wales. Palaeontology 50:10391050.
Kammer, T. W. C. D. Sumrall, Zamora, S., Ausich, W. I., and Deline, B.. 2013. Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms. PLoS ONE 8:e77989. doi:10.1371/journal.pone.0077989.
Kirk, E. 1944. Cymbiocrinus, a new inaduate crinoid genus from the Upper Mississippian. American Journal of Science 242:233245.
Lahaye, M. C., and Jangoux, M.. 1987. The skeleton of the stalked stages of the comatulid crinoid Atedon bifida (Echinodermata). Zoomorphology 107:5865.
Laubichler, M. D. 2000. Homology in development and the development of the homology concept. American Zoologist 40:777788.
Lieberman, B. S. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate Tectonics, and Evolution. New York: Kluwer Academic/Plenum Publishers.
Mladenov, P. V., and Chia, F. S.. 1983. Development, settling behavior, metamorphosis, and pentacrinoid feeding and growth of the feather star Florometra serratissima. Marine Biology 73:309323.
Mooi, R. B., David, B., and Marchland, D.. 1994. Echinoderm skeletal homologies: classical morphology meets modern phylogenetics. Pp. 8795in B. David, A. Guille, J. Féral, and M. Roux, eds. Echinoderms Through Time. A. A. Balkema, Rotterdam.
Mooi, R. B., and David, B.. 1997. Skeletal homologies of echinoderms. Pp. 305335in J. A. Waters, and C. G. Maples, eds. Geobiology of Echinoderms. Paleontological Society. Papers 3.
Mooi, R., David, B., and Wray, G. A.. 2005. Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evolution and Development 7:542555.
Moore, R. C. 1962. Ray structures of some inadunate crinoids. University of Kansas Paleontological Contributions 5:147.
Moore, R. C., and Laudon, L. R. 1943. Evolution and Classification of Paleozoic crinoids. Geological Society of America Special Paper 46:1154.
Moore, R. C., and Plummer, F. B.. 1940. Crinoids from the Upper Carboniferous and Permian strata in Texas. University of Texas Publication 3945.
Moore, R. C., and Teichert, C.. eds. 1978. Treatise on Invertebrate Paleontology (Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence, 1027 p.
Moore, R. C., Lane, N. G., and Strimple, H. L.. 1978. Order Cladida Moore and Laudon. 1943, Pp. 578759in R. C. Moore, and C. Teichert, eds. Treatise on Invertebrate Paleontology (Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.
Mortensen, T. 1920. Studies in the development of crinoids. Papers from the Department of Marine Biology, Carnegie Institution of Washing 16.
Nakano, H., Hibino, T., Oji, T., Hara, Y., and Amemiya, S.. 2003. Larval stages of a living sea lily (stalked crinoid echinoderm). Nature 421:158160.
Patterson, C. 1982. Morphological characters and homology. Pp. 2174in K. A. Joysey, and A. E. Friday, eds. Problems of Phylogenetic Reconstruction. Academic Press, New York.
Paul, C. R. C., and Smith, A. B.. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews 59:443481.
Philip, G. M. 1964. Australian fossil crinoids. I, Introduction and terminology for the anal plates of crinoids. Proceedings of the Linnaean Society of New South Wales 88:259272.
Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Review of Ecology, Evolution, and Systematics 39:301319.
Rabosky, D. L., and McCune, A. R.. 2010. Reinventing species selection with molecular phylogenies. Trends in Ecology and Evolution 25:6874.
Raff, R. A. 2007. Written in stone: fossils, genes, and evo-devo. Nature Reviews Genetics 8:911920.
Rasmussen, H. W. 1978. Evolution of articulate crinoids. Pp T302T316in R. C. Moore, and C. Teichert, eds. Treatise on Invertebrate Paleontology Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.
Remane, A. 1952. Die Grundlagen des Naturlichen Systems der Vergleichenden Anatomie und der Phylogenetik. Geest und Portig, Leipzig.
Rouse, G. W., Jermiin, L. S., Wilson, N. G., Eeckhaut, I., Lanterbecq, D., Oji, T., Young, C. M., Browning, T., Cisternas, P., Helgen, L. E., Stuckey, M., and Messing, C. G.. 2013. Fixed, free, and fixed: the fickle phylogeny of extant Crinoidea (Echinodermata) and their Permian–Triassic origin. Molecular Phylogenetics and Evolution 66:161181.
Roux, M. M. Eleaume, Hemery, L. G., and Ameziane, N.. 2013. When morphology meets molecular data in crinoid phylogeny: a challenge. Cahiers de Biologie Marine 54:541548.
Rozhnov, S. V., and Mirantsev, G. V.. 2014. Structural aberrations in the cup in cladid crinoids from the Carboniferous of the Moscow region. Paleontological Journal 48:12431257.
Saint-Hilaire, E. G. 1830. Principes de Philosophie Zoologique, discutés en Mars 1830, au Sein de l’Académie Royale des Sciences. Pichon et Dider, Paris.
Sereno, P. C. 2007. Logical basis for morphological characters in phylogenetics. Cladistics 23:565587.
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.
Shibata, T. F. A. Sato, Oji, T., and Akasaka, K.. 2008. Development and growth of the feather star Oxyamanthus japonicas to sexual maturity. Zoological Science 25:10751083.
Shubin, N. H., and Marshall, C. R.. 2000. Fossils, genes, and the origin of novelty. Paleobiology 26:324340.
Simms, M. J. 1993. Reinterpretation of thecal plate homology and phylogeny in the Class Crinoidea. Lethaia 26:303312.
Simms, M. J., and Sevastopulo, G. D.. 1993. The origin of articulate crinoids. Palaeontology 36:91109.
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society, London 356:351368.
Springer, F. 1920. The Crinoidea Flexibilia. Smithsonian Institution, Publication 2501.
Sprinkle, J., and Guensburg, T. E.. 1997. Early radiation of echinoderms. Pp. 205224in J. A. Waters, and C. G. Maples, eds. Geobiology of Echinoderms. Paleontological Society. Papers 3.
Sprinkle, J., and Kier, P. M.Phylum Echinodermata. 1987. Pp. 550611in R. S. Boardman, A. H. Cheetham, and A. J. Rowell, eds. Fossil Invertebrates. Blackwell Scientific, Palo Alto.
Sprinkle, J., and Wahlman, G. P.. 1994. New echinoderms from the Early Ordovician of West Texas. Journal of Paleontology 68:324338.
Strimple, H. L. 1948. Notes on Phanocrinus from the Fayetteville Formation of Northeastern Oklahoma. Journal of Paleontology 22:490493.
Strimple, H. L 1978. Evolutionary trends among Poteriocrinina. Pp. T298T301in R. C. Moore, and C. Teichert, eds. Treatise on Invertebrate Paleontology (Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.
Sumrall, C. D. 1997. The role of fossil in the phylogenetic reconstruction of Echinodermata. Pp. 267288in J. A. Waters, and C. G. Maples, eds. Geobiology of Echinoderms. Paleontological Society. Papers 3.
Sumrall, C. D 2008. The origin of Lovén’s Law in glyptocystitoid rhombiferans and its bearing on the plate homology and the heterochronic evolution of the hemicosmitid peristomal border. Pp. 228241in W. I. Ausich, and G. D. Webster, eds. Echinoderm Paleobiology. University of Indiana Press, Bloomington.
Sumrall, C. D 2010. A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms. Pp. 269276in L. G. Harris, S. A. Böttger, C. W. Walker, and M. P. Lesser, eds. Echinoderms: Durham. Taylor and Francis Group, London, UK.
Sumrall, C. D., and Waters, J. A.. 2012. Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived blastozoa. Journal of Paleontology 86:956972.
Thomson, W. C. 1865. On the embryogeny of Antedon rosaceus (Lmk) (Comatula rosacea of Lamark). Philosophical Transactions of the Royal Society of London 155:513545.
Ubaghs, G. 1953. Classe des crinoides. In J. Piveteau, ed. Traité de Paléontologie 3:658773.
Ubaghs, G 1978. Skeletal morphology of fossil crinoids. T58T216in R. C. Moore, and C. Teirchert, eds. Treatise on invertebrate paleontology. Part T, Echinodermata 2. Crinoidea, Geological Society of America, Boulder and University of Kansas Press, Lawrence.
van Valen, L. M. 1982. Homology and causes. Journal of Morphology 173:305312.
von Baer, K. E. 1828. Uber Entwickelungsgeschichte der Thiere: Beobachtung und Reflektion, Bornträger.
Wagner, G. P. 2006. Homologues, natural kinds and the evolution of modularity. American Zoologist 36:3643.
Wagner, G. P 2007. The developmental genetics of homology. Nature Reviews Genetics 8:473479.
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with Early Paleozoic gastropods. Paleobiology 21:248272.
Wagner, P. J 2000a. Phylogenetic analyses and the fossil record: tests, inferences, hypotheses, and models. Paleobiology 26:341371.
Wagner, P. J 2000b. Exhaustion of morphologic character states among fossil taxa. Evolution 54:365386.
Walker, L. J., Wilkinson, B. H., and Ivany, L. C.. 2002. Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings. The Journal of Geology 110:7587.
Wanner, J. 1916. Dei Permischen echinodermen von Timor, I. Teil. Paläeontology von Timor 11:1329.
Wheeler, W. C. 2012. Systematics: a course of lectures. John Wiley and Sons. 426 pp.
Wiley, E. O. 1975. Karl R. Popper, systematics and classification: a reply to Walter Bock and other evolutionary taxonomists. Systematic Zoology 24:233243.
Wiley, E. O., and Lieberman, B. S.. 2011. Phylogenetics: theory and practice of phylogenetic systematics. John Wiley and Sons.
Webster, G. D., and Jell, P. A.. 1999. New Permian crinoids from Australia. Memoirs of the Queensland Museum 33:349359.
Webster, G. D., and Lane, N. G.. 1967. Additional Permian crinoids from southern Nevada. University of Kansas Paleontological Contributions 27:132.
Webster, G. D., and Maples, C. G.. 2006. Cladid crinoid (Echinodermata) anal conditions: a terminology problem and proposed solution. Palaeontology 49:187212.
Wright, A. M., and Hillis, D. M.. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9:e109210. doi:10.1371/journal.pone.0109210.
Wright, D. F., and Ausich, A. I.. 2015. From the stem to the crown: phylogeny and diversification of pan-cladid crinoids. Pp. 199–202 in S. Zamora and I. Rábano, eds. Progress in Echinoderm Paleobiology. Cuadernos del museo Geominero, 19, Instituto Geológico y Minero de España, 292 pp.
Wright, D. F., and Stigall, A. L.. 2014. Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonic, speciation, and biotic invasions. PLoS ONE 8:e68353. doi:10.1371/journal.pone.0068353.
Wright, J. 1920. On Carboniferous crinoids from Fife; with notes on some localities, and provisional lists of species. Transactions of the Geological Society of Glasgow 16:363392.
Wright, J 1926. Notes on the anal plates of Epachycrinus calyx and Zeacrinus konincki. Geological Magazine 64:352373.
Wright, J 1927. Some variations in Ulocrinus and Hydreionocrinus. Geological Magazine 71:241268.
Zamora, S., Rahman, I. A., and Smith, A. B.. 2012. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS One 7:e38296. doi:10.1371/journal.pone.0038296.
Zamora, S., and Rahman, I. A.. 2014. Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology 57:11051119.

Related content

Powered by UNSILO

Fossils, homology, and “Phylogenetic Paleo-ontogeny”: a reassessment of primary posterior plate homologies among fossil and living crinoids with insights from developmental biology

  • David F. Wright (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.