Skip to main content Accessibility help
×
Home

Evolutionarily distinct “living fossils” require both lower speciation and lower extinction rates

  • Dominic J. Bennett (a1), Mark D. Sutton (a2) and Samuel T. Turvey (a3)

Abstract

As a label for a distinct category of life, “living fossil” is controversial. The term has multiple definitions, and it is unclear whether the label can be genuinely used to delimit biodiversity. Even taking a purely phylogenetic perspective in which a proxy for the living fossil is evolutionary distinctness (ED), an inconsistency arises: Does it refer to “dead-end” lineages doomed to extinction or “panchronic” lineages that survive through multiple epochs? Recent tree-growth model studies indicate that speciation rates must have been unequally distributed among species in the past to produce the shape of the tree of life. Although an uneven distribution of speciation rates may create the possibility for a distinct group of living fossil lineages, such a grouping could only be considered genuine if extinction rates also show a consistent pattern, be it indicative of dead-end or panchronic lineages. To determine whether extinction rates also show an unequal distribution, we developed a tree-growth model in which the probability of speciation and extinction is a function of a tip’s ED. We simulated thousands of trees in which the ED function for a tip is randomly and independently determined for speciation and extinction rates. We find that simulations in which the most evolutionarily distinct tips have lower rates of speciation and extinction produce phylogenetic trees closest in shape to empirical trees. This implies that a distinct set of lineages with reduced rates of diversification, indicative of a panchronic definition, is required to create the shape of the tree of life.

Copyright

References

Hide All
Alfaro, M. E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D. L., Giorgio, C., and Harmon, L. J.. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences USA 106:1341013414.
Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology and Palaeoecology 127:285311.
Alroy, J., et al. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.
Amemiya, C. T., et al. 2013. The African coelacanth genome provides insights into tetrapod evolution. Nature 496:311316.
Bennett, D. J. 2016. Project-EDBMM: testing the phylogenetic reality of the living fossil with an EDBMM. https://github.com/DomBennett/Project-EDBMM.
Blum, M., and François, O.. 2006. Which random processes describe the Tree of Life? A large-scale study of phylogenetic tree imbalance. Systematic Biology 55:685691.
Boettiger, C., and Temple Lang, D.. 2012. treebase: an R package for discovery, access and manipulation of online phylogenies. Methods in Ecology and Evolution 3:10601066.
Bortolussi, N., Durand, E., Blum, M., and François, O.. 2006. apTreeshape: Statistical analysis of phylogenetic tree shape. Bioinformatics 22:363364.
Boyajian, G. E. 1991. Taxon age and selectivity of extinction. Paleobiology 17:4957.
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., Galfetti, T., and Guex, J.. 2009. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:11181121.
Britton, T., Oxelman, B., Vinnersten, A., and Bremer, K.. 2002. Phylogenetic dating with confidence intervals using mean path lengths. Molecular Phylogenetics and Evolution 24:5865.
Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S., and Bremer, K.. 2007. Estimating divergence times in large phylogenetic trees. Systematic Biology 56:741752.
Casane, D., and Laurenti, P.. 2013. Why coelacanths are not “living fossils”: a review of molecular and morphological data. BioEssays 35:332338.
Cavin, L., and Kemp, A.. 2011. The impact of fossils on the evolutionary distinctiveness and conservation status of the Australian lungfish. Biological Conservation 144:31403142.
Colless, D. H. 1982. Review of phylogenetics: the theory and practice of phylogenetic systematics. Systematic Zoology 31:100104.
Courtillot, V., and Gaudemer, Y.. 1996. Effects of mass extinctions on biodiversity. Nature 381:146148.
Darwin, C. 1859. On the origin of species by means of natural selection. London: J. Murray.
Eldredge, N., and Stanley, S. M.. 1984. Living fossils. Casebooks in Earth Sciences. Springer, New York.
Ezard, T. H. G., Aze, T., Pearson, P. N., and Purvis, A.. 2011. Interplay between changing climate and species” ecology drives macroevolutionary dynamics. Science 332:349351.
Ezard, T. H. G., Thomas, G. H., and Purvis, A.. 2013. Inclusion of a near-complete fossil record reveals speciation-related molecular evolution. Methods in Ecology and Evolution 4:745753.
Forey, P. 1984. The coelacanth as a living fossil. Pp. 166169 in N. Eldredge and S. M. Stanley, ed. Living fossils. Casebooks in Earth Sciences. Springer, New York.
Global Names Architecture. 2015. Global Names Resolver. http://resolver.globalnames.biodinfo.org, accessed 14 July 2015.
Gould, S. J., and Eldredge, N.. 1993. Punctuated equilibrium comes of age. Nature 366:223227.
Gould, S. J., Gilinsky, N. L., and German, R. Z.. 1987. Asymmetry of lineages and the direction of evolutionary time. Science 236:14371441.
Hagen, O., Hartmann, K., Steel, M., and Stadler, T.. 2015. Age-dependent speciation can explain the shape of empirical phylogenies. Systematic Biology 64:432440.
Hay, J. M., Subramanian, S., Millar, C. D., Mohandesan, E., and Lambert, D. M.. 2008. Rapid molecular evolution in a living fossil. Trends in Genetics 24:106109.
Helmus, M. R., Bland, T. J., Williams, C. K., and Ives, A. R.. 2007. Phylogenetic measures of biodiversity. American Naturalist 169(3):E68E83.
Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C., and Baillie, J. E. M.. 2007. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2:e296.
Liow, L. H. 2004. A test of Simpson’s “Rule of the Survival of the Relatively Unspecialized” using fossil crinoids. American Naturalist 164:431443.
Liow, L. H. 2006. Do deviants live longer? Morphology and longevity in trachyleberidid ostracodes. Paleobiology 32:5569.
Liow, L. H., and Finarelli, J. A.. 2014. A dynamic global equilibrium in carnivoran diversification over 20 million years. Proceedings of Royal Society of London B 281:20132312.
Manceau, M., Lambert, A., and Morlon, H.. 2015. Phylogenies support out-of-equilibrium models of biodiversity. Ecology Letters 18:347356.
Miller, A. I., and Sepkoski, J. J.. 1988. Modeling bivalve diversification: the effect of interaction on a macroevolutionary system. Paleobiology 14:364369.
Mooers, A., and Heard, S.. 1997. Inferring evolutionary process from phylogenetic tree shape. Quarterly Review of Biology 72:3154.
Nagalingum, N. S., Marshall, C. R., Quental, T. B., Rai, H. S., Little, D. P., and Mathews, S.. 2011. Recent synchronous radiation of a living fossil. Science 334:796799.
Paradis, E., Claude, J., and Strimmer, K.. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289290.
Piel, W. H., Donoghue, M., and Sanderson, M.. 2002. TreeBASE: a database of phylogenetic information. Pp. 4147 in To the Interoperable “Catalog of Life” with Partners, Species 2000 Asia Oceania. Tsukuba, Japan.
Purvis, A., Fritz, S. A., Rodríguez, J., Harvey, P. H., and Grenyer, R.. 2011. The shape of mammalian phylogeny: patterns, processes and scales. Philosophical Transactions of the Royal Society of London B 366:24622477.
Pybus, O. G., and Harvey, P. H.. 2000. Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society of London B 267:22672272.
Quental, T. B., and Marshall, C. R.. 2013. How the Red Queen drives terrestrial mammals to extinction. Science 341:290292.
Rabosky, D. L., and Goldberg, E. E.. 2015. Model inadequacy and mistaken inferences of trait-dependent speciation. Systematic Biology 64:340355.
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11:4252.
Redding, D. W., DeWolff, C. V., and Mooers, A. Ø.. 2010. Evolutionary distinctiveness, threat status, and ecological oddity in primates. Conservation Biology 24:10521058.
Roy, K. 1996. The roles of mass extinction and biotic interaction in large-scale replacements: a reexamination using the fossil record of stromboidean gastropods. Paleobiology 22:436452.
Royer, D. L., Hickey, L. J., and Wing, S. L.. 2003. Ecological conservatism in the “living fossil” Ginkgo. Paleobiology 29:84104.
Rudkin, D. M., Young, G. A., and Nowlan, G. S.. 2008. The oldest horseshoe crab: a new xiphosurid from Late Ordovician Konservat-Lagerstätten deposits, Manitoba, Canada. Palaeontology 51:19.
Sackin, M. J. 1972. “Good” and “bad” phenograms. Systematic Zoology 21:225226.
Sanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19:101109.
Schluter, D. 2000. The ecology of adaptive radiation. Oxford University Press, Oxford.
Schopf, T. J. M. 1984. Rates of evolution and the notion of “living fossils.”. Annual Review of Earth Planetary Science 12:245292.
Simpson, G.G. 1944. Tempo and mode in evolution. Columbia University Press, New York.
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4:223251.
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222251.
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.
Sepkoski, J. J. Jr., McKinney, F. K., and Lidgard, S.. 2000. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26:718.
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1:130.
Venditti, C., and Pagel, M.. 2010. Speciation as an active force in promoting genetic evolution. Trends in Ecology and Evolution 25:1420.
Venkatesh, B., et al. 2014. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505:174179.
Voje, K. L., Holen, Ø. H., Liow, L. H., and Stenseth, N. C.. 2015. The role of biotic forces in driving macroevolution: beyond the Red Queen. Proceedings of the Royal Society of London B 282:19.
Wagner, P. J., and Estabrook, G. F.. 2014. Trait-based diversification shifts reflect differential extinction among fossil taxa. Proceedings of the National Academy of Sciences USA 111:1641916424.
Wiltshire, J., Huffer, F. W., and Parker, W. C.. 2014. A general class of test statistics for Van Valen’s Red Queen hypothesis. Journal of Applied Statistics 41:20282043.
Yoshida, K. 2002. Long survival of “living fossils” with low taxonomic diversities in an evolving food web. Paleobiology 28:464473.
Yule, G. U. 1925. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philosophical Transactions of the Royal Society of London B 213:2187.

Evolutionarily distinct “living fossils” require both lower speciation and lower extinction rates

  • Dominic J. Bennett (a1), Mark D. Sutton (a2) and Samuel T. Turvey (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed