Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T12:03:19.428Z Has data issue: false hasContentIssue false

The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms

Published online by Cambridge University Press:  08 February 2016

Richard J. F. Jenkins*
Affiliation:
Centre for Precambrian Research, Department of Geology and Geophysics, The University of Adelaide, North Terrace, Adelaide, South Australia, 5000

Abstract

The late Precambrian genus Rangea Gürich, 1929, a frond-like fossil composed of repeated foliate elements, is one of the first discovered forms belonging to the now widely known soft-bodied assemblages characterizing the Ediacaran Period. Rangea occurs together with the genera Pteridinium Gürich, 1933, and Ernietta Pflug, 1966, in the lower parts of the Nama Group, Namibia (South West Africa).

Investigation of the preservation and structure of Rangea, utilizing a methodology similar to that established by Wade (1968, 1971), indicates that it was probably a colonial octocoral consisting of a large tapering primary polyp, or oozoid, and a number of leaf-shaped, conjoined fronds which bore the feeding polyps; it is suggested to belong to a group of early Ediacaran anthozoans which provide a fossil link between the still living Telestacea and Pennatulacea. Similar investigations of Pteridinium and Ernietta disclose that their structure is different from Rangea and does not support ideas that they are related to it.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrendt, H., Hunziker, J. C., and Weber, K. 1978. Age and degree of metamorphism and time of nappe emplacement along the southern margin of the Damara orogen/Namibia (SW-Africa). Geol. Rund. 67:719742.CrossRefGoogle Scholar
Anderson, M. M. 1976. Fossil Metazoa of the Late-Precambrian Avalon Fauna, Southeastern Newfoundland. Geol. Soc. Am. Abstr. Programs 8:754.Google Scholar
Anderson, M. M. 1978. Ediacaran fauna. McGraw-Hill Yearbook of Science and Technology. 1978:146149.Google Scholar
Anderson, M. M. and Misra, S. B. 1968. Fossils found in the Precambrian Conception Group in Southeastern Newfoundland. Nature. 220:680681.CrossRefGoogle Scholar
Anderson, M. M. and Conway Morris, S. 1982. A review, with descriptions of four unusual forms, of the soft-bodied fauna of the Conception and St. John's Groups (late-Precambrian), Avalon Peninsula, Newfoundland. Proc. 3d N. Am. Paleo. Conv. 1:18.Google Scholar
Bayer, M. 1956. Octocorallia. Pp.F166–F231. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Part F. Coelenterata. 498 pp. Geol. Soc. Am. and Univ. Kansas Press; Lawrence.Google Scholar
Bourne, G. C. 1900. The Anthozoa. Chap. 6, Pp. 184. In: Lankester, E. R., ed. A Treatise on Zoology. II. The Porifera and Coelenterata. 368 pp. Adam and Charles Black; London.Google Scholar
Brafield, A. E. 1969. Water movements in the pennatulid coelenterate Pteroides griesum. J. Zool. Lond. 158:317325.CrossRefGoogle Scholar
Brasier, M. D. 1979. The Cambrian radiation event. Pp. 103159. In: House, M. R., ed. The Origin of Major Invertebrate Groups. Academic Press; New York.Google Scholar
Cloud, P. 1968. Pre-metazoan evolution and the origins of the Metazoa. Pp. 172. In: Drake, E. T., ed. Evolution and Environment. 470 pp. Yale Univ.; New Haven.Google Scholar
Cloud, P. and Glaessner, M. F. 1982. The Ediacarian Period and System: Metazoa Inherit the Earth. Science. 217:783792.CrossRefGoogle ScholarPubMed
Crimes, T. P. and Germs, G. J. B. 1982. Trace fossils from the Nama Group (Precambrian-Cambrian) of southwest Africa (Namibia). J. Paleontol. 56:890907.Google Scholar
Fedonkin, M. A. 1981. Belomorskaya Biota Venda (Dokembriyskaya besskeletnaya fauna Severa Russkoy Platformy). (White Sea biota of Vendian [Precambrian non-skeletal fauna of the Russian Platform North].) 99 pp. Trans. Akad. Nauk. SSSR, 342. Nauka; Moscow.Google Scholar
Fedonkin, M. A. 1983. Organicheskiy Mir Venda (The Organic World of the Vendian.) Itogi Nauki tekh. ser. Stratigraphy. Palaeontology. 12:1127.Google Scholar
Ford, T. D. 1958. Precambrian fossils from Charnwood Forest. Proc. Yorks. Geol. Soc. 31:211217.CrossRefGoogle Scholar
Ford, T. D. 1963. The Pre-Cambrian fossils of Charnwood Forest. Trans. Leicester Lit. Phil. Soc. 57:5762.Google Scholar
Ford, T. D. 1979. Precambrian fossils and the origin of the Phanerozoic phyla. Pp. 721. In: House, M. R., ed. The Origin of Major Invertebrate Groups. 515 pp. Syst. Assoc. Spec. Vol. 12. Academic Press; London.Google Scholar
Ford, T. D. 1981. The Edicaran fossils of Charnwood Forest, Leicestershire. Proc. Geol. Assoc. 91:8183.CrossRefGoogle Scholar
Germs, G. J. B. 1972a. The stratigraphy and paleontology of the lower Nama Group, South West Africa. Univ. Cape Town Dept. Geol. Chamber of Mines Precamb. Res. Unit, Bull. 12:1250.Google Scholar
Germs, G. J. B. 1972b. New shelly fossils from Nama Group, South West Africa. Am. J. Sci. 272:752761.CrossRefGoogle Scholar
Germs, G. J. B. 1972c. Trace fossils from the Nama Group, South West Africa. J. Paleontol. 46:864870.Google Scholar
Germs, G. J. B. 1973a. A reinterpretation of Rangea schneiderhoehni and the discovery of a related new fossil from the Nama Group, South West Africa. Lethaia. 6:110.CrossRefGoogle Scholar
Germs, G. J. B. 1973b. Possible sprigginid worm and a new trace fossil from the Nama Group, South West Africa. Geology. 1:6970.2.0.CO;2>CrossRefGoogle Scholar
Germs, G. J. B. 1974. The Nama Group in South West Africa and its relationship to the Pan-African Geosyncline. J. Geol. 82:301317.CrossRefGoogle Scholar
Glaessner, M. F. 1959a. Precambrian Coelenterata from Australia, Africa and England. Nature. 183:14721473.CrossRefGoogle Scholar
Glaessner, M. F. 1959b. Fauna. Pp. 377401. In: Glaessner, M. F. and Daily, B., eds. The Geology and Late Precambrian Fauna of the Ediacara Fossil Reserve. 42 pp. Rec. S. Aust. Mus. 13.Google Scholar
Glaessner, M. F. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia. 2:369393.CrossRefGoogle Scholar
Glaessner, M. F. 1977. The Ediacara fauna and its place in the evolution of the Metazoa. Pp. 257268. In: Sidorenko, A. V., ed. Correlation of the Precambrian. Vol. 1, 403 pp. Nauka; Moscow.Google Scholar
Glaessner, M. F. 1979a. Precambrian paleobiology: Middle and Late Precambrian life and environment. Pp. 115124. In: Motz, L., ed. The Rediscovery of the Earth. 279 pp. Van Nostrand Reinhold Co.; New York.Google Scholar
Glaessner, M. F. 1979b. Precambrian. Pp.A79–A118. In: Robinson, R. A. and Teichert, C., eds. Treatise on Invertebrate Palaeontology. Part A. Introduction. Fossilization (Taphonomy) Biogeography and Biostratigraphy. 569 pp. Geol. Soc. Am. and Univ. Kansas Press; Lawrence.Google Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life. A Biohistorical Study. 244 pp. Cambridge Univ. Press; Cambridge.Google Scholar
Glaessner, M. F. and Wade, M. 1966. The Late Precambrian fossils from Ediacara, South Australia. Palaeontology. 9:599628.Google Scholar
Glaessner, M. F. and Walter, M. R. 1975. New Precambrian fossils from the Arumbera Sandstone, Northern Territory, Australia. Alcheringa. 1:5969.CrossRefGoogle Scholar
Gürich, G. 1929. Die ältesten fossilien Südafrikas. Z. prakt. Geol. 37:85.Google Scholar
Gürich, G. 1930a. Die bislang ältesten Spuren von Organismen in Südafrika. Pp. 670680. 15th Internat. Geol. Congr. South Africa 1929, Comptes Rendus.Google Scholar
Gürich, G. 1930b. Über den Kuibis-Quarzit in Südwestafrika. Z. dt. geol. Ges. 82:637.Google Scholar
Gürich, G. 1933. Die Kuibis-Fossilien der Nama-Formation von Südwestafrika. Paläontol. Z. 15:137154.CrossRefGoogle Scholar
Haefelfinger, H. R. 1974. Phylum: Cnidaria. Pp. 178255. In: Grzimek, B., ed. Grzimek's Animal Life Encyclopedia. Vol. 1. Lower Animals. 599 pp. Van Nostrand Reinhold Co.; New York.Google Scholar
Harland, W. B. and Herod, K. N. 1975. Glaciations through time. Pp. 189216. In: Wright, A. E. and Moseley, F., eds. Ice Ages: Ancient and Modern. 320 pp. Geol. J. Spec. Iss. 6. Seel House Press; Liverpool.Google Scholar
Harrington, H. J. and Moore, R. C. 1956. Siphonophorida. Pp.F145–F152. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Part F. Coelenterata. 498 pp. Geol. Soc. Am. and Univ. Kansas Press; Lawrence.Google Scholar
Hickson, S. J. 1916. The Pennatulacea of the Siboga Expedition. Siboga Exped. 14:x + 265 pp.Google Scholar
Hickson, S. J. 1930. On the classification of the Alcyonaria. Proc. Zool. Soc. Lond. 1:229252.CrossRefGoogle Scholar
Hill, D. and Wells, J. W. 1956. Hydroida and Spongiomorphida. Pp.F81–F89. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Part F. Coelenterata. 498 pp. Geol. Soc. Am. and Univ. Kansas Press; Lawrence.Google Scholar
Hyman, L. H. 1940. The Invertebrates: Protozoa through Ctenophora. 726 pp. McGraw-Hill; New York.Google Scholar
Jenkins, R. J. F. 1981. The concept of an ‘Ediacaran Period’ and its stratigraphic significance in Australia. Trans. R. Soc. S. Aust. 105:179194.Google Scholar
Jenkins, R. J. F. 1984a. Ediacaran events: boundary relationships, correlation of key sections, especially in ‘Armorica’. Geol. Mag. 121:635643.CrossRefGoogle Scholar
Jenkins, R. J. F. 1984b. Interpreting the oldest fossil cnidarians. Proc. 4th Internat. Symp. on Fossil Cnidaria, Aug. 7–12, 1983, Washington D.C., U.S.A. Palaeontographica Americana 54:95104.Google Scholar
Jenkins, R. J. F. and Gehling, J. G. 1978. A review of the frond-like fossils of the Ediacara assemblage. Rec. S. Aust. Mus. 17:347359.Google Scholar
Jenkins, R. J. F., Plummer, P. S., and Moriarty, K. C. 1981. Late Precambrian pseudofossils from the Flinders Ranges, South Australia. Trans. R. Soc. S. Aust. 105:6783.Google Scholar
Keller, B. M. 1979. Precambrian stratigraphic scale of the USSR. Geol. Mag. 116:419504.CrossRefGoogle Scholar
Kröner, A. 1982. Rb-Sr geochronology and tectonic evolution of the Pan-African Damara Belt of Namibia, Southwestern Africa. Am. J. Sci. 282:14711507.CrossRefGoogle Scholar
Kröner, A., McWilliams, M. O., Germs, G. J. B., Reid, A. B., and Schalk, K. E. L. 1980. Paleomagnetism of late Precambrian to early Paleozoic mixtites bearing formations in Namibia (South West Africa): The Nama Group and Blaubeker Formation. Am. J. Sci. 280:942968.CrossRefGoogle Scholar
McAlester, A. L. 1962. Mode of preservation in early Palaeozoic pelecypods and its morphologic and ecologic significance. J. Paleontol. 36:6793.Google Scholar
Milner, H. B., Ward, A. M., and Higham, F. 1962. Sedimentary Petrography. Vol. 2. Principles and Applications. 715 pp. George Allen & Unwin; London.Google Scholar
Misra, S. B. 1969. Late Precambrian (?) fossils from Southeastern Newfoundland. Geol. Soc. Am. Bull. 80:21332140.CrossRefGoogle Scholar
Misra, S. B. 1971. Stratigraphy and depositional history of late Precambrian Coelenterate-bearing rocks, Southeastern Newfoundland. Geol. Soc. Am. Bull. 82:979987.CrossRefGoogle Scholar
Pflug, H. D. 1970a. Zur Fauna der Nama-Schichten in Südwest-Afrika. I. Pteridinia, Bau und systematische Zugehörigkeit. Palaeontogr. Abt. A. 134:226262.Google Scholar
Pflug, H. D. 1970b. Zur Fauna der Nama-Schichten in Südwest-Afrika. II. Rangidae, bau und systematische Zugehörigkeit. Palaeontogr. Abt. A. 135:198231.Google Scholar
Pflug, H. D. 1971a. Neue Zeugnisse zum Ursprung der höheren Tiere. Naturwissenschaften. 58:348352.CrossRefGoogle Scholar
Pflug, H. D. 1971b. Neue Fossilfunde im Jung-Präkambrium und ihre Aussagen zur Entstehung der höheren Tiere. Geol. Rdsch. 60:13401350.CrossRefGoogle Scholar
Pflug, H. D. 1972a. Zur Fauna der Nama-Schichten in Südwest-Afrika. III. Erniettomorpha, und Systematik. Palaeontogr. Abt. A. 139:134170.Google Scholar
Pflug, H. D. 1972b. Systematik der jung-präkambrischen Petalonamae Pflug 1970. Paläontol. Z. 46:5667.CrossRefGoogle Scholar
Pflug, H. D. 1974. Vor- und Frühgeschichte der Metazoen. Precambrian history of the Metazoa. N. Jb. Geol. Paläontol. Abh. 145:328374.Google Scholar
Richter, R. 1955. Die ältesten Fossilien Süd-Afrikas. Senck. Leth. 36:243289.Google Scholar
Scrutton, C. T. 1979. Early fossil cnidarians. Pp. 161207. In: House, M. R., ed. The Origin of Major Invertebrate Groups. 515 pp. Syst. Assoc. Spec. Vol. 12. Academic Press; London.Google Scholar
Seilacher, A. 1982. Distinctive features of sandy tempestites. Pp. 333349. In: Einsele, G. and Seilacher, A., eds. Cyclic and Event Stratification. 536 pp. Springer-Verlag; Berlin.CrossRefGoogle Scholar
Sokolov, B. S. 1973. Vendian of northern Eurasia. Pp. 204218. In: Pitcher, M. G., ed. Arctic Geology. 747 pp. Mem. Am. Ass. Petrol. Geol.Google Scholar
Sokolov, B. S. 1976. Organicheskiy mir zenli na puti k Fanerozoiskoy differentsiatsii. (The Earth's organic world on the path toward Phanerozoic differentiation.) Vest. Akad. Nauk SSSR. 1976, 1:126143.Google Scholar
Tankard, A. J., Jackson, M. P. A., Eriksson, K. A., Hobday, D. K., Hunter, D. R., and Minter, W. E. L. 1982. Crustal Evolution of Southern Africa: 3.8 Billion Years of Earth History. 523 pp. Springer-Verlag; New York.CrossRefGoogle Scholar
Wade, M. 1968. Preservation of soft-bodied animals in Precambrian sandstones at Ediacara, South Australia. Lethaia. 1:238267.CrossRefGoogle Scholar
Wade, M. 1971. Bilateral Precambrian Chondrophores from the Ediacara fauna, South Australia. Proc. R. Soc. Via. 84:183188.Google Scholar
Wade, M. 1972. Hydrozoa and Scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology. 15:197225.Google Scholar
Yochelson, E. L., Sturmer, W., and Stanley, G. D. Jr. 1983. Plectodiscus discoideus (Rauff): A redescription of a Chondrophorine from the Early Devonian Hunsruck Slate, West Germany. Paläontol. Z. 57:3968.CrossRefGoogle Scholar