Skip to main content Accessibility help
×
Home

Differences between evolution of mean form and evolution of new morphotypes: an example from Late Cretaceous planktonic foraminifera

  • Michal Kucera (a1) and Björn A. Malmgren (a1)

Abstract

Morphological evolution in the Late Cretaceous (Maastrichtian) Contusotruncana lineage of planktonic foraminifera was studied at DSDP Sites 525 (South Atlantic) and 384 (North Atlantic). A multivariable approach was used to separate aspects of form controlled by geographical variation (size, spiral roundness of the test, percentage of kummerform specimens) from those due to changes that occurred simultaneously in geographically distant populations of the lineage (shell conicity, number of chambers in the last whorl).

A gradual increase in mean shell conicity was observed over the last 3 million years of the Cretaceous. It arose from the combination of a rapid development of highly conical shells after 68.5 Ma and a long-term trend of progressive disappearance of the ancestral morphotype. Therefore, despite the gradual change in “mean form,” the morphological evolution in the Contusotruncana lineage differs from the classical image of phyletic gradualism. The gradual increase in mean shell conicity in the lineage was accompanied by a remarkable decrease in its absolute abundance (shell accumulation rate), suggesting that the changes in shell morphology might not have been neutral with respect to natural selection. Apparently, gradual change in “mean form” of fossil lineages does not require an equally gradual development of morphological novelties. It may be caused by natural selection operating on a constant range of variation in populations living in environments without geographical barriers.

Copyright

References

Hide All
Arnold, A. J. 1983. Phyletic evolution in the Globorotalia crassaformis (Galloway and Wissler) lineage: a preliminary report. Paleobiology 9:390398.
Berger, W. H. 1969. Planktonic foraminifera: basic morphology and ecologic implications. Journal of Paleontology 43:13691383.
Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M. P. 1995. A revised Cenozoic geochronology and chronostratigraphy. Society of Economic Paleontologists and Mineralogists Special Publication 54:129212.
Boersma, A., and Shackleton, N. J. 1981. Oxygen- and carbon-isotope variations and planktonic-foraminifer depth habitats, Late Cretaceous to Paleocene, central Pacific, Deep Sea Drilling Project Sites 463 and 465. Initial Reports of the Deep Sea Drilling Project 62:513526
Bookstein, F. L. 1987. Random walk and the existence of evolutionary rates. Paleobiology 13:446464.
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, New York.
Caron, M. 1985. Cretaceous planktic foraminifera. Pp. 1786in Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., eds. Plankton stratigraphy. Cambridge University Press, Cambridge.
Charlesworth, B. 1984. The cost of phenotypic evolution. Paleobiology 10:319327.
Chave, A. D. 1984. Lower Paleocene–Upper Cretaceous magnetostratigraphy, Sites 525, 527, 528, and 529, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 74:525531.
D'Hondt, S., and Arthur, M. A. 1995. Interspecies variation in stable isotopic signals of Maastrichtian planktonic foraminifera. Paleoceanography 10:123135.
D'Hondt, S., and Lindinger, M. 1994. A stable isotope record of the Maastrichtian ocean-climate system: South Atlantic DSDP site 528. Palaeogeography, Palaeoclimatology, Palaeoecology 112:363378.
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115in Schopf, T. J. M., ed. Models in paleobiology. W. H. Freeman, San Francisco.
Eldredge, N., and Gould, S. J. 1988. Punctuated equilibrium prevails. Nature 332:211212.
El-Naggar, Z. R. 1966. Stratigraphy and planktonic foraminifera of the Upper Cretaceous–Lower Tertiary succession in the Esna-Idfu region, Nile Valley, Egypt, U.A.R. Bulletin of the British Museum of Natural History, Supplements in Geology 2:1291.
El-Naggar, Z. R., and Haynes, J. 1967. Globotruncana caliciformis in the Maestrichtian Sharawna Shale of Egypt. Cushman Foundation for Foraminiferal Research, Contribution 18:113.
Fortey, R. A. 1988. Seeing is believing: gradualism and punctuated equilibria in the fossil record. Science Progress, Oxford 72:119.
Gandolfi, R. 1955. The genus Globotruncana in northeastern Colombia. Bulletin of American Paleontology 36:1118.
Gould, S. J. 1990. Speciation and sorting as the source of evolutionary trends, or “Things are seldom what they seem.” Pp. 327in McNamara, K. J., ed. Evolutionary trends. Belhaven, London.
Gould, S. J., and Eldredge, N. 1993. Punctuated equilibrium comes of age. Nature 366:223227.
Hemleben, Ch., Spindler, M., and Anderson, R. O. 1989. Modern planktonic foraminifera. Springer, New York.
Herm, D. 1962. Stratigraphische und mikropaläontologische Untersuchungen der Oberkreide im attengebirge und Nierental. Abhandlungen Bayerisches Akademie der Wissenschaften, Mathematisch-physikalische Klasse, Neue Folge 104:1119.
Huber, B. T., Hodell, D. A., and Hamilton, C. P. 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin 107:11641191.
Hunter, R. S. T., Arnold, A. J., and Parker, W. C. 1988. Evolution and homeomorphy in the development of the Paleocene Planorotalites pseudomenardii and the Miocene Globorotalia (Globorotalia) margaritae lineages. Micropaleontology 34:181192.
Johnson, J. G. 1982. Occurrence of phyletic gradualism and punctuated equilibria through geologic time. Journal of Paleontology 56:13291331.
Kellogg, D. E. 1975. The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria). Paleobiology 1:359370.
Kellogg, D. E. 1983. Phenology of morphologic change in radiolarian lineages from deep-sea cores: implications for macroevolution. Paleobiology 9:355362.
Kucera, M., and Malmgren, B. A. 1996. Latitudinal variation in the planktic foraminifer Contusotruncana contusa in the terminal Cretaceous ocean. Marine Micropaleontology 28:3152.
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314334.
Larson, P. A., and Opdyke, N. D. 1979. Paleomagnetic results from Early Tertiary/Late Cretaceous sediments of Site 384. Initial Reports of the Deep Sea Drilling Project 43:785788.
Lazarus, D. 1986. Tempo and mode of morphologic evolution near the origin of the rediolarian lineage Pterocanium prismatium. Paleobiology 12:175189.
Lazarus, D., Hilbrecht, H., Spencer-Cervato, C., and Thierstein, H. 1995. Sympatric speciation and phyletic change in Globorotalia truncatulinoides. Paleobiology 21:2851.
Lynch, J. D. 1989. The gauge of speciation: on frequencies of models of speciation. Pp. 527553in Otte, D. and Endler, J. A., eds. Speciation and its consequences. Sinauer, Sunderland, Mass.
MacLeod, K. G., and Huber, B. T. 1996. Reorganization of deep ocean circulation accompanying a Late Cretaceous extinction event. Nature 380:422425.
Malmgren, B. A. 1987. Differential dissolution of Upper Cretaceous planktonic foraminifera from a temperate region of the South Atlantic Ocean. Marine Micropaleontology 11:51271.
Malmgren, B. A. 1989. Coiling patterns in terminal Cretaceous planktonic foraminifera. Journal of Foraminiferal Research 19:311323.
Malmgren, B. A. 1991. Biogeographic patterns in terminal Cretaceous planktonic foraminifera from Tethyan and warm Transitional waters. Marine Micropaleontology 18:7399.
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, southwest Pacific. Paleobiology 7:230240.
Manivit, H. 1984. Paleogene and upper Cretaceous nannofossils. Initial Reports of the Deep Sea Drilling Project 74:475499.
Masters, B. A. 1977. Mesozoic planktonic foraminifera. Pp. 301731in Ramsay, A. T. S., ed. Oceanic micropaleontology, Vol. 1. Academic Press, London.
Moore, T. C. Jr. et al. 1984. Site 525. Initial Reports of the Deep Sea Drilling Project 74:41160.
Mulder, E., and Marks, P. 1983. Umbilical structures of Globotruncana fornicata (Cushman) in exceptionally well-preserved material from Blake Escarpment (D.S.D.P. Leg 44, Site 390A). Cretaceous Research 4:211214.
Norris, R. D., Corfield, R. M., and Cartlidge, J. 1996. What is gradualism? Cryptic speciation in globorotalid foraminifera. Paleobiology 22:386405.
Pessagno, E. A. Jr. 1967. Upper Cretaceous planktonic foraminifera from the western Gulf Coastal Plain. Paleontographica Americana 5:245445.
Scott, G. H. 1982. Tempo and stratigraphic record of speciation in Globorotalia puncticulata. Journal of Foraminiferal Research 12:112.
Sheldon, P. R. 1990. Shaking up evolutionary patterns. Nature 345:772.
Sheldon, P. R. 1996. Plus ça change—a model for stasis and evolution in different environments. Palaeogeography, Palaeoclimatology, Palaeoecology 127:209227.
Signes, M., Bijma, J., Hemleben, Ch., and Ott, R. 1993. A model for planktic foraminiferal shell growth. Paleobiology 19:7191.
Sugarman, P. J., Miller, K. G., Bukry, D., and Feigenson, M. D. 1995. Uppermost Campanian–Maestrichtian strontium isotopic, biostratigraphic, and sequence stratigraphic framework of the New Jersey Coastal Plain. Geological Society of America Bulletin 107:1937.
Thierstein, H. R. 1981. Late Cretaceous nannoplankton and the change at the Cretaceous-Tertiary boundary. The Deep Sea Drilling Project: a decade of progress. Society of Economic Paleontologists and Mineralogists Special Publication 32:355394.
Thierstein, H. R., and Okada, H. 1979. The Cretaceous/Tertiary boundary event in the North Atlantic. Initial Reports of the Deep Sea Drilling Project 43:601616.
Todd, R. 1970. Maestrichtian (Late Cretaceous) foraminifera from a deep-sea core off southwestern Africa. Revista Española de Micropaleontología 2:131154.
Tucholke, B. E. et al. 1979. Site 384: The Cretaceous/Tertiary boundary, Aptian reefs, and the J- Anomaly Ridge. Initial Reports of the Deep Sea Drilling Project 43:107154.

Differences between evolution of mean form and evolution of new morphotypes: an example from Late Cretaceous planktonic foraminifera

  • Michal Kucera (a1) and Björn A. Malmgren (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed