Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-08T02:34:38.024Z Has data issue: false hasContentIssue false

Developmental change during a speciation event: evidence from planktic foraminifera

Published online by Cambridge University Press:  16 August 2021

Karina Vanadzina*
Affiliation:
School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, U.K. E-mail: kv15207@my.bristol.ac.uk, D.Schmidt@bristol.ac.uk.
Daniela N. Schmidt
Affiliation:
School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, U.K. E-mail: kv15207@my.bristol.ac.uk, D.Schmidt@bristol.ac.uk.
*
*Corresponding author.

Abstract

Studies in extant populations have shown that plasticity in developmental trajectories can contribute to the origin of novel traits and species divergence via the expression of previously cryptic variation in response to environmental change. Finding evidence for plasticity-led evolution in the fossil record remains challenging due to the poor preservation of developmental stages in many organisms. Planktic foraminifera are ideally suited for addressing this knowledge gap, because adult organisms in species in which development has been studied retain information about all the ontogenetic stages they have undergone. Here we map changes in the developmental trajectories of 68 specimens in the Globorotalia plesiotumida–tumida lineage of planktic foraminifera from the late Miocene until Recent using high-resolution computer tomography techniques. Our unique dataset shows that the transition from the ancestral G. plesiotumida to the descendant G. tumida is preceded by an increased variability in total cumulative volume—an important indicator of reproductive success in this taxon. We also find that the transition interval is marked by a distinct shift in developmental trajectory, which supports a rapid lineage division rather than gradual change. We suggest that high levels of plasticity—particularly in the early stages of development—have contributed to divergence in the ancestral morphology when subjected to a global cooling trend in the late Miocene. The large variation in developmental trajectories that we uncover within our samples emphasizes the need for high-throughput approaches in studies of ontogenetic change in the fossil record.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Center for Biological Diversity, University of St Andrews, Sir Harold Mitchell Building, Greenside Place, St Andrews KY16 9TH, U.K.

References

Literature Cited

Anderson, O. R., Spindler, M., , A. W. H., and Hemleben, C.. 1979. Trophic activity of planktonic foraminifera. Journal of the Marine Biological Association of the United Kingdom 59:791799.CrossRefGoogle Scholar
André, A., Weiner, A., Quillévéré, F., Aurahs, R., Morard, R., Douady, C. J., de Garidel-Thoron, T., et al. 2012. The cryptic and the apparent reversed: lack of genetic differentiation within the morphologically diverse plexus of the planktonic foraminifer Globigerinoides sacculifer. Paleobiology 39:2139.CrossRefGoogle Scholar
, A. W. H., and Anderson, O. R.. 1976. Gametogenesis in planktonic foraminifera. Science 192:890892.CrossRefGoogle ScholarPubMed
, A. W. H., Caron, D. A., and Anderson, O. R.. 1981. Effects of feeding frequency on life processes of the planktonic foraminifer Globigerinoides sacculifer in laboratory culture. Journal of the Marine Biological Association of the United Kingdom 61:257277.CrossRefGoogle Scholar
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., et al. 2006. Climate-driven trends in contemporary ocean productivity. Nature 444:752755.CrossRefGoogle ScholarPubMed
Benton, M. J., and Pearson, P. N.. 2001. Speciation in the fossil record. Trends in Ecology and Evolution 16:405411.CrossRefGoogle ScholarPubMed
Berger, W. H. 1969. Planktonic foraminifera: basic morphology and ecologic implications. Journal of Paleontology 43:13691383.Google Scholar
Bookstein, F. L. 1987. Random walk and the existence of evolutionary rates. Paleobiology 13:446464.CrossRefGoogle Scholar
Brummer, G. J. A., Hemleben, C., and Spindler, M.. 1987. Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): a concept exemplified by Globigerinoides sacculifer (Brady) and G. ruber (d'Orbigny). Marine Micropaleontology 12:357381.CrossRefGoogle Scholar
Burke, J. E., Renema, W., Schiebel, R., and Hull, P. M.. 2019. Three-dimensional analysis of inter-and intraspecific variation in ontogenetic growth trajectories of planktonic foraminifera. Marine Micropaleontology 155:101794.CrossRefGoogle Scholar
Caromel, A. G. M., Schmidt, D. N., Fletcher, I., and Rayfield, E. J.. 2016. Morphological change during the ontogeny of the planktic foraminifera. Journal of Micropalaeontology 35:219.Google Scholar
Caromel, A. G. M., Schmidt, D. N., and Rayfield, E. J.. 2017. Ontogenetic constraints on foraminiferal test construction. Evolution and Development 19:157168.CrossRefGoogle ScholarPubMed
Chaisson, W. P., and Leckie, R. M.. 1993. High-resolution Neogene planktonic foraminifer biostratigraphy of Site 806, Ontong Java Plateau (Western Equatorial Pacific). Pp. 137178 in Sigurdsson, H., Leckie, R. M., and Acton, G. D., eds. Proceedings of the Ocean Drilling Program, scientific results, Leg 130. Ocean Drilling Program, College Station, Tex.Google Scholar
Darling, K. F., and Wade, C. M.. 2008. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology 67:216238.CrossRefGoogle Scholar
Darling, K. F., Kucera, M., Kroon, D., and Wade, C. M.. 2006. A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. Paleoceanography 21: PA2011.CrossRefGoogle Scholar
Davis, C. V., Livsey, C. M., Palmer, H. M., Hull, P. M., Thomas, E., Hill, T. M., and Benitez-Nelson, C. R.. 2020. Extensive morphological variability in asexually produced planktic foraminifera. Science Advances 6:eabb8930.CrossRefGoogle ScholarPubMed
de Vargas, C., Renaud, S., Hilbrecht, H., and Pawlowski, J.. 2001. Pleistocene adaptive radiation in Globorotalia truncatulinoides: genetic, morphologic, and environmental evidence. Paleobiology 27:104125.2.0.CO;2>CrossRefGoogle Scholar
Faber, W. W., Anderson, O. R., Lindsey, J. L., and Caron, D. A.. 1988. Algal-foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralia; 1. Occurrence and stability of two mutually exclusive chrysophyte endosymbionts and their ultrastructure. Journal of Foraminiferal Research 18:334343.CrossRefGoogle Scholar
Grigoratou, M., Monteiro, F. M., Schmidt, D. N., Wilson, J. D., Ward, B. A., and Ridgwell, A.. 2019. A trait-based modelling approach to planktonic foraminifera ecology. Biogeosciences 16:14691492.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O. R.. 1989. Modern planktonic foraminifera. Springer-Verlag, New York.CrossRefGoogle Scholar
Huber, B. T. 1994. Ontogenetic morphometrics of some Late Cretaceous trochospiral planktonic foraminifera from the Austral realm. Smithsonian Contributions to Paleobiology 77:185.Google Scholar
Hull, P. M., and Norris, R. D.. 2009. Evidence for abrupt speciation in a classic case of gradual evolution. Proceedings of the National Academy of Sciences USA 106:2122421229.CrossRefGoogle Scholar
Jackson, I. S. C. 2020. Developmental bias in the fossil record. Evolution and Development 22:88102.CrossRefGoogle ScholarPubMed
Jain, S., and Collins, L. S.. 2007. Trends in Caribbean paleoproductivity related to the Neogene closure of the Central American Seaway. Marine Micropaleontology 63:5774.CrossRefGoogle Scholar
Kennett, J. P., and Srinivasan, M. S.. 1983. Neogene planktonic foraminifera: a phylogenetic atlas. Hutchinson Ross, New York.Google Scholar
Klingenberg, C. P. 1998. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Reviews 73:79123.CrossRefGoogle ScholarPubMed
Kucera, M. 2007. Planktonic foraminifera as tracers of past oceanic environments. Pp. 213262 in Hillaire-Marcel, C. and de Vernal, A., eds. Developments in marine geology. Elsevier, Amsterdam.Google Scholar
Ledón-Rettig, C. C., Pfennig, D. W., and Crespi, E. J.. 2010. Diet and hormonal manipulation reveal cryptic genetic variation: implications for the evolution of novel feeding strategies. Proceedings of the Royal Society of London B 277:35693578.Google ScholarPubMed
Levis, N. A., and Pfennig, D. W.. 2016. Evaluating “plasticity-first” evolution in nature: key criteria and empirical approaches. Trends in Ecology and Evolution 31:563574.CrossRefGoogle ScholarPubMed
Levis, N. A., Isdaner, A. J., and Pfennig, D. W.. 2018. Morphological novelty emerges from pre-existing phenotypic plasticity. Nature Ecology and Evolution 2:12891297.CrossRefGoogle ScholarPubMed
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P.. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9:377389.CrossRefGoogle Scholar
McNamara, K. J. 1982. Heterochrony and phylogenetic trends. Paleobiology 8:130142.CrossRefGoogle Scholar
McNamara, K. J. 1988. Patterns of heterochrony in the fossil record. Trends in Ecology and Evolution 3:176180.CrossRefGoogle ScholarPubMed
Moczek, A. P., Sultan, S., Foster, S., Ledón-Rettig, C., Dworkin, I., Nijhout, H. F., Abouheif, E., and Pfennig, D. W.. 2011. The role of developmental plasticity in evolutionary innovation. Proceedings of the Royal Society of London B 278:27052713.Google ScholarPubMed
Morard, R., Füllberg, A., Brummer, G. J. A., Greco, M., Jonkers, L., Weiner, A. K. M., Darling, K., et al. 2019. Genetic and morphological divergence in the warm-water planktonic foraminifera genus Globigerinoides. PLoS ONE 14:130.CrossRefGoogle ScholarPubMed
Norris, R. D., and Nishi, H.. 2001. Evolutionary trends in coiling of tropical Paleogene planktic foraminifera. Paleobiology 27:327347.2.0.CO;2>CrossRefGoogle Scholar
O'Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., et al. 2016. Formation of the Isthmus of Panama. Science Advances 2:e1600883.CrossRefGoogle ScholarPubMed
Pfennig, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlichting, C. D., and Moczek, A. P.. 2010. Phenotypic plasticity's impacts on diversification and speciation. Trends in Ecology and Evolution 25:459467.CrossRefGoogle ScholarPubMed
Renaud, S., and Schmidt, D. N.. 2003. Habitat tracking as a response of the planktic foraminifer Globorotalia truncatulinoides to environmental fluctuations during the last 140 kyr. Marine Micropaleontology 49:97122.CrossRefGoogle Scholar
Rundle, S. D., and Spicer, J. I.. 2016. Heterokairy: a significant form of developmental plasticity? Biology Letters 12:20160509.CrossRefGoogle ScholarPubMed
Rutherford, S., D'Hondt, S., and Prell, W.. 1999. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400:749753.CrossRefGoogle Scholar
Schmidt, D. N., Renaud, S., and Bollmann, J.. 2003. Response of planktic foraminiferal size to late Quaternary climate change. Paleoceanography 18:112.Google Scholar
Schmidt, D. N., Renaud, S., Bollmann, J., Schiebel, R., and Thierstein, H. R.. 2004. Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation. Marine Micropaleontology 50:319338.CrossRefGoogle Scholar
Schmidt, D. N., Rayfield, E. J., Cocking, A., and Marone, F.. 2013. Linking evolution and development: synchrotron radiation X-ray tomographic microscopy of planktic foraminifers. Palaeontology 56:741749.CrossRefGoogle Scholar
Schmidt, D. N., Caromel, A. G. M., Seki, O., Rae, J. W. B., and Renaud, S.. 2016. Morphological response of planktic foraminifers to habitat modifications associated with the emergence of the Isthmus of Panama. Marine Micropaleontology 128:2838.CrossRefGoogle Scholar
Schmidt, D. N., Thomas, E., Authier, E., Saunders, D., and Ridgwell, A.. 2018. Strategies in times of crisis—insights into the benthic foraminiferal record of the Palaeocene–Eocene Thermal Maximum. Philosophical Transactions of the Royal Society of London A 376:20170328.Google ScholarPubMed
Schweitzer, P. N., and Lohmann, G. P.. 1991. Ontogeny and habitat of modern menardiiform planktonic foraminifera. Journal of Foraminiferal Research 21:332346.CrossRefGoogle Scholar
Seears, H. A., Darling, K. F., and Wade, C. M.. 2012. Ecological partitioning and diversity in tropical planktonic foraminifera. BMC Evolutionary Biology 12:116.CrossRefGoogle ScholarPubMed
Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost, R. D.. 2010. Alkenone and boron-based Pliocene pCO2 records. Earth and Planetary Science Letters 292:201211.CrossRefGoogle Scholar
Seki, O., Schmidt, D. N., Schouten, S., Hopmans, E. C., Sinninghe Damsté, J. S., and Pancost, R. D.. 2012. Paleoceanographic changes in the eastern equatorial Pacific over the last 10 Myr. Paleoceanography 27:PA3224.CrossRefGoogle Scholar
Shipboard Scientific Party. 1997a. Site 999. Pp. 131–230 in H. Sigurdsson, R. M. Leckie, and G. D. Acton, eds. Proceedings of the Ocean Drilling Program, initial reports, Leg 165. Ocean Drilling Program, College Station, Tex.Google Scholar
Shipboard Scientific Party. 1997b. Site 1000. Pp. 231–289 in H. Sigurdsson, R. M. Leckie, and G. D. Acton, eds. Proceedings of the Ocean Drilling Program, initial reports, Leg 165. Ocean Drilling Program, College Station, Tex.Google Scholar
Signes, M., Bijma, J., Hemleben, C., and Ott, R.. 1993. A model for planktic foraminiferal shell growth. Paleobiology 19:7191.CrossRefGoogle Scholar
Stampanoni, M., Groso, A., Isenegger, A., Mikuljan, G., Chen, Q., Bertrand, A., Henein, S., et al. 2006. Trends in synchrotron-based tomographic imaging: the SLS experience. Developments in X-Ray Tomography V 6318:63180M.CrossRefGoogle Scholar
Sverdlove, M. S., and , A. W. H.. 1985. Taxonomic and ecological significance of embryonic and juvenile planktonic foraminifera. Journal of Foraminiferal Research 15:235241.CrossRefGoogle Scholar
Vincent, E., and Berger, W. H.. 1985. Carbon dioxide and polar cooling in the Miocene: the Monterey hypothesis. Pp. 455468 in Broecker, W. S. and Sundquist, E. T., eds. The carbon cycle and atmospheric CO2: natural variations Archean to Present, Vol. 32. American Geophysical Union, Washington D.C.Google Scholar
Wei, K. Y., and Kennett, J.. 1986. Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations. Paleoceanography 1:6784.CrossRefGoogle Scholar
Weiner, A. K. M., Morard, R., Weinkauf, M. F. G., Darling, K. F., André, A., Quillévéré, F., Ujiie, Y., et al. 2016. Methodology for single-cell genetic analysis of planktonic foraminifera for studies of protist diversity and evolution. Frontiers in Marine Science 3:255.CrossRefGoogle Scholar
West-Eberhard, M. J. 2005. Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences USA 102:65436549.CrossRefGoogle ScholarPubMed