Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T23:42:55.934Z Has data issue: false hasContentIssue false

Ammonoid early internal shell structure: its bearing on early life history

Published online by Cambridge University Press:  08 February 2016

Kazushige Tanabe
Affiliation:
Department of Earth Sciences, Faculty of Science, Ehime University, Matsuyama 790, Japan
Yasuo Ohtsuka
Affiliation:
Department of Geology, Faculty of Science, Kyushu University, Fukuoka 812, Japan

Abstract

Morphologic analysis was made on early whorls of two Paleozoic and 43 Mesozoic ammonoid species to obtain basic data on early life history. A positive linear relationship between protoconch and ammonitella sizes is recognized among the species examined. Total rotation angle of the ammonitella (ammonitella angle) seems to be independent of ammonitella size but has a significant negative linear relation with whorl expansion rate. This supports the model that the embryonic shell of ammonoids consists of gas-filled protoconch and the succeeding body whorl up to the primary varix. Growth analysis of siphuncle diameter in the early post-embryonic stage also indicates that the shell growth rates of the species hatched from large-sized eggs were smaller than those of species hatched from small-sized eggs.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, J. M. and Williams-Arnold, L. D. 1977. Cephalopoda: Decapoda. Pp. 243290. In: Giese, A. C. and Pearse, J. S., eds. Reproduction of Marine Invertebrates. Vol. 4. Molluscs: Gastropods and Cephalopods. Academic Press; London and New York.CrossRefGoogle Scholar
Bandel, K. 1975. Embronalgehäuse karibischer Meso- und Neogastropoden (Mollusca). Abh. Akad. Wiss. Lit., Math.-naturwiss. K1., 1975/1:1133.Google Scholar
Bandel, K. 1982. Morphologie und Bildung der frühontogenetischen Gehause bei conchiferen Mollusken. Facies. 7:1198.CrossRefGoogle Scholar
Bandel, K. and Boletzky, S. v. 1979. A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. Veliger. 21:313354.Google Scholar
Bandel, K., Landman, N. H., and Waage, K. M. 1982. Microornament on early whorls of Mesozoic ammonites: Implications for early ontogeny. J. Paleontol. 56:386391.Google Scholar
Birkelund, T. 1967. Submicroscopic structures in early growth-stages of Maastrichtian ammonites (Saghalinites and Scaphites). Medd. fra Dansk Geol. Foren. 17:95101.Google Scholar
Birkelund, T. 1981. Ammonoid shell structure. Pp. 177214. In: House, M. R. and Senior, J. R., eds. The Ammonoidea, Academic Press; London and New York.Google Scholar
Boletzky, S. v. 1969. Zum Vergleich der Ontogenesen von Octopus vulgaris, O. joubini und O. briareus. Rev. Suisse Zool. 76:716726.Google Scholar
Chamberlain, J. A. Jr. 1978. Permeability of the siphuncular tube of Nautilus: its ecologic and paleoecologic implications. N. Jb. Geol. Paläontol. Mh. 1978(3):129142.Google Scholar
Donovan, D. T., Callomon, J. H., and Howarth, M. K. 1981. Classification of the Jurassic Ammonitina. Pp. 101155. In: House, M. R. and Senior, J. R., eds. The Ammonoidea. Academic Press; London and New York.Google Scholar
Drushchits, V. V. and Doguzhayeva, L. A. 1974. Some morphogeneric characteristis of phylloceratids and lytoceratids (Ammonoidea). Paleontol. J. 1974(1):3748.Google Scholar
Drushchits, V. V. and Doguzhayeva, L. A. 1982. Ammonites under the Electron Microscope. Moscow Univ. Press; Moscow. 240 pp. (In Russian.)Google Scholar
Drushchits, V. V. and Khiami, N. 1970. Structure of the septa, protoconch walls and initial whorls in early Cretaceous ammonites. Paleontol. J. 1970(1):2638.Google Scholar
Drushchits, V. V., Doguzhayeva, L. A., and Mikhaylova, I. A. 1977. The structure of the ammonitella and the direct development of ammonites. Paleontol. J. 1977(2):188199.Google Scholar
Erben, H. K., Flajs, G., and Siehl, A. 1969. Die Frühontogenetische Entwicklung der Schalenstruktur ectocochleater Cephalopoden. Palaeontographica. 132A:154.Google Scholar
Greenwald, L., Ward, P. D., and Greenwald, O. E. 1980. Cameral liquid transport and buoyancy control in chambered nautilus (Nautilus macromphalus). Nature. 286:5556.CrossRefGoogle Scholar
Haven, N. 1977. Cephalopoda: Nautiloidea. Pp. 227241. In: Giese, A. C. and Pearse, J. S., eds. Reproduction of Marine Invertebrates. Vol. 4. Molluscs: Gastropods and Cephalopods. Academic Press; London and New York.CrossRefGoogle Scholar
Hirano, H. 1975. Ontogenetic study of late Cretaceous Gaudryceras tenuiliratum. Mem. Fac. Sci., Kyushu Univ. Ser. D. (Geol.). 22:165192.Google Scholar
Hirano, H. 1978. Phenotypic substitution of Gaudryceras (a Cretaceous ammonite). Trans. Proc. Paleontol. Soc. Japan, N.S. 109:235258.Google Scholar
Jablonski, D. and Lutz, R. A. 1980. Molluscan larval shell morphology. Pp. 323380. In: Rhoads, D. C. and Lutz, R. A., eds. Skeletal Growth of Aquaric Organisms. Plenum; New York.CrossRefGoogle Scholar
JECOLN (Japanese Expert Consultation on Living Nautlius). 1980. Nautilus macromphalus in Captivity. Tokai Univ. Press; Tokyo. 80 pp.Google Scholar
Jeletzky, J. A. 1966. Comparative morphology, phylogeny and classification of fossil Coleoidea. Paleontol. Contr. Univ. Kansas, Article Mollusca. 7. 162 pp.Google Scholar
Kulicki, C. 1974. Remarks on the embryogeny and post-embryonal development of ammonites. Acta Palaeontol. Polon. 19:201224.Google Scholar
Kulicki, C. 1975. Structure and mode of origin of the ammonite proseptum. Acta Palaeontol. Polon. 20:535542.Google Scholar
Kulicki, C. 1979. The ammonite shell: its structure, development and biological significance. Palaeont. Polon. 39:97142.Google Scholar
Landman, N. H. 1982. Embryonic shells of Baculites. J. Paleontol. 56:12351241.Google Scholar
Lominadze, T. A. 1981. The taxonomic significance of various features of the internal structure of Callovian ammonitids. Paleontol. J. 1981(4):119123.Google Scholar
Ohtsuka, Y. 1985. Early internal shell microstructure of some Mesozoic Ammonoidea: implications for higher taxonomy. Trans. Proc. Palaeont. Soc. Japan, N.S. In press.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. J. Paleontol. 41:4365.Google Scholar
Raup, D. M. and Chamberlain, J. A. Jr. 1967. Equations for volume and center of gravity in ammonoid shells. J. Paleontol. 41:566574.Google Scholar
Shuto, T. 1974. Larval ecology of prosobranch gastropods and its bearing on biogeography and paleontology. Lethaia. 7:239256.CrossRefGoogle Scholar
Tanabe, K. 1977. Functional evolution of Otoscaphites puerculus (JIMBO) and Scaphites planus (YABE), Upper Cretaceous ammonites. Mem. Fac. Sci., Kyushu Univ., Ser. D (Geol.). 23:367407.Google Scholar
Tanabe, K. 1979. Palaeoecological analysis of ammonoid assemblages in the Turanian Scaphites facies of Hokkaido, Japan. Palaeontology. 22:609630.Google Scholar
Tanabe, K., Fukuda, Y., and Obata, I. 1980. Ontogenetic development and functional morphology in the early growth-stages of three Cretaceous ammonites. Bull. Nat. Sci. Mus. Tokyo, Ser. C (Geol.). 6:926.Google Scholar
Tanabe, K., Fukuda, Y., and Obata, I. 1982. Formation and function of the siphuncle-septal neck structures in two Mesozoic ammonites. Trans. Proc. Palaeontol. Soc. Japan, N.S. 128:433443.Google Scholar
Tanabe, K., Obata, I., and Futakami, M. 1978. Analysis of ammonoid assemblages in the Upper Turanian of the Manji area, central Hokkaido. Bull. Nat. Sci. Mus. Tokyo, Ser. C (Geol.). 4:3762.Google Scholar
Tanabe, K., Obata, I., Fukuda, Y., and Futakami, M. 1979. Early shell growth in some Upper Cretaceous ammonites and its implications to major taxonomy. Bull. Nat. Sci. Mus. Tokyo, Ser. C (Geol.). 5:153176.Google Scholar
Thorson, G. 1950. Reproductive and larval development of marine bottom invertebrates. Biol. Rev. 25:145.CrossRefGoogle Scholar
Trueman, A. E. 1941. The ammonite body-chamber with special reference to the buoyancy and mode of life of the living ammonite. Q. J. Geol. Soc. Lond. 96:339383.CrossRefGoogle Scholar
Ward, P. 1982. The relationship of siphuncle size to emptying rates in chambered cephalopods: implications for cephalopod paleobiology. Paleobiology. 8:426433.CrossRefGoogle Scholar
Ward, P. and Martin, A. W. 1978. On the buoyancy of the pearly Nautilus. J. Exp. Zool. 205:512.CrossRefGoogle Scholar
Ward, P., Greenwald, L., and Magnier, Y. 1981. The chamber formation cycle in Nautilus macrophalus. Paleobiology. 7:481493.CrossRefGoogle Scholar
Webber, H. H. 1977. Gastropoda: Prosobranchia. Pp. 197. In: Giese, A. C. and Pearse, J. S., eds. Reproduction of Marine Invertebrates. Vol. 4. Molluscs: Gastropods and Cephalopods. Academic Press; London and New York.Google Scholar
Wells, M. J. and Wells, J. 1977. Cephalopoda: Octopoda. Pp. 291336. In: Giese, A. C. and Pearse, J. S., eds. Reproduction of Marine Invertebrates. Vol. 4. Molluscs: Gastropods and Cephalopods. Academic Press; London and New York.CrossRefGoogle Scholar
Willey, A. 1898. Some zoological results of a voyage to Melanesia during the years 1894–1897. Proc. Cambridge Philos. Soc. 9:398401.Google Scholar
Willey, A. 1902. Contribution to the Natural History of the Pearly Nautilus: Zoological Results Based on Material from New Britain, New Guinea Loyalty Island and Elsewhere Collected during the Years 1895, 1896, and 1897. Pt. 6. Pp. 691830. Cambridge Univ. Press; London and New York.CrossRefGoogle Scholar
Wright, C. W. 1981. Cretaceous Ammonoidea. Pp. 157174. In: House, M. R. and Senior, J. R., eds. The Ammonoidea. Pp. 157–174. Academic Press; London and New York.Google Scholar
Zakharov, Y. D. 1974. New data on internal shell structure in Carboniferous, Triassic and Cretaceous ammonoids. Paleontol. J. 1974(1):2536.Google Scholar