Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T18:15:26.448Z Has data issue: false hasContentIssue false

Sampling bias and the fossil record of planktonic foraminifera on land and in the deep sea

Published online by Cambridge University Press:  08 February 2016

Graeme T. Lloyd
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
Paul N. Pearson
Affiliation:
School of Earth and Ocean Sciences, University of Cardiff, Park Place, Cardiff CF10 3AT, United Kingdom
Jeremy R. Young
Affiliation:
Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
Andrew B. Smith*
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. E-mail: a.smith@nhm.ac.uk
*
Corresponding author

Abstract

Large-scale trends in planktonic foraminiferal diversity have so far been based on utilization of synoptic biostratigraphic range charts. Although this approach ensures the taxonomic consistency and quality of the data being used, it takes no formal account of any sampling biases that might exist in the fossil record. We demonstrate that the occurrence data of planktonic foraminifera, as recorded in the primary literature, are strongly biased by sampling. We do this by demonstrating that raw diversity curves derived from the land-based and deep-sea records are strikingly different, but that they each correlate with the intensity of sampling in their respective environments, and thus are ultimately controlled by the structure of the geological record in each setting. Because sampling of the Mesozoic record is best in our land record whereas sampling of the Cenozoic is best in our deep-sea record, we combine the two to generate the best-supported estimates of species and genus diversity over time from these data. We correct for sampling bias using shareholder quorum subsampling and a modeling approach. The data are then transformed to generate a range-through plot of species richness that is compared with two earlier estimates of the diversity history where comparable species-in-bin data can be recovered. No robust statistical correlation is found among the three estimates. Although differences in amplitude are to be expected, differences in the actual shape of the curve are surprising. We conclude that these differences stem from the nature of the data themselves, namely the taxonomic scheme adopted and the taxonomic coverage used.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2000. Successive approximations of diversoty curves: ten more years in the library. Geology 28:10231026.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 2010a. The shifting balance of diversity among major marine animal groups. Science 329:11911194.CrossRefGoogle ScholarPubMed
Alroy, J. 2010b. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.CrossRefGoogle Scholar
Alroy, J. 2010c. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. InAlroy, J. and Hunt, G., eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:5580.CrossRefGoogle Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Arnold, A., and Parker, W. 2003. Biogeography of planktonic foraminifera. Pp. 103122inSen Gupta, B. K., ed. Modern foraminifera. Kluwer Academic, New York.Google Scholar
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M., Wade, B. S., and Pearson, P. N. 2011. A phylogeny of macroperforate planktonic foraminifera from fossil data. Biological Reviews of the Cambridge Philosophical Society 86:900927.CrossRefGoogle ScholarPubMed
, A. W. H. 1982. Biology of planktonic foraminifera. InBroadhead, T. W., ed. Foraminifera: notes for a short course. Studies in Geology 6:5192. University of Tennessee, Knoxville.Google Scholar
Benson, R. B. J, Butler, R. J., Lindgren, J., and Smith, A. S. 2010. Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proceedings of the Royal Society of London B 277:829834.Google ScholarPubMed
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., and Maxwell, P. A. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 301:358360.CrossRefGoogle ScholarPubMed
Ezard, T. H. G., Aze, T., Pearson, P. N., and Purvis, A. 2011. Interplay between climate and species' ecology drives macroevolutionary dynamics. Science 332:349351.CrossRefGoogle ScholarPubMed
Hart, M. B., Oxford, M. J., and Hudson, W. 2002. The early evolution and palaeobiogeography of Mesozoic planktonic foraminifera. Geological Society of London Special Publications 194:115125.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Jablonski, D., Roy, K., Valentine, J. W., Price, R. M., and Anderson, P. S. 2003. The impact of the Pull of the Recent on the history of marine diversity. Science 16:11331135.CrossRefGoogle Scholar
Kennett, J. P., and Srinivasan, M. S. 1983. Neogene planktonic foraminifera. Hutchinson Ross, Stroudsburg, Penn.Google Scholar
Lazarus, D. B. 2011. The deep sea microfossil record: potential and current data quality. InMcGowan, A. J. and Smith, A. B., eds. Comparing the geological and fossil records: implications for biodiversity. Geological Society of London Special Publication 358:141166.CrossRefGoogle Scholar
Lloyd, G. T. 2012. A refined modelling approach to assess the influence of sampling on palaeobiodiversity curves: new support for declining Cretaceous dinosaur richness. Biology Letters 8:123126.CrossRefGoogle ScholarPubMed
Lloyd, G. T., Davis, K. E., Pisani, D., Tarver, J. E., Ruta, M., Sakamoto, M., Hone, D. W. E., Jennings, R., and Benton, M. J. 2008. Dinosaurs and the Cretaceous terrestrial revolution. Proceedings of the Royal Society of London B 275:24832490.Google ScholarPubMed
Lloyd, G. T., Smith, A. B., and Young, J. R. 2011. Quantifying the deep sea rock and fossil record bias using coccolithophores. InMcGowan, A. J. and Smith, A. B., eds. Comparing the geological and fossil records: implications for biodiversity. Geological Society of London Special Publication 358:167178.CrossRefGoogle Scholar
Lloyd, G. T., Young, J. Y., and Smith, A. B. 2012a. Taxonomic structure of the fossil record is shaped by sampling bias. Systematic Biology 61:8089.CrossRefGoogle ScholarPubMed
Lloyd, G. T., Young, J. Y., and Smith, A. B. 2012b. Comparative quality and fidelity of the deep-sea and land-based nannofossil records. Geology 40:155158.CrossRefGoogle Scholar
Loeblich, A. R. Jr.,and Tappan, H. 1988. Foraminiferal genera and their classifications. Van Nostrand Reinhold, New York.CrossRefGoogle Scholar
Mannion, P. D., Upchurch, P., Carrano, M. T., and Barrett, P. M. 2011. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biology Reviews 86:157181.CrossRefGoogle ScholarPubMed
McKinney, M. L. 1990. Classifying and analysing evolutionary trends. Pp. 2858inMcNamara, K. J., ed. Evolutionary trends. Belhaven, London.Google Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.CrossRefGoogle ScholarPubMed
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F. 2005. The Phanerozoic record of global sea-level change. Science 310:12931298.CrossRefGoogle ScholarPubMed
Norris, R. D. 1991. Biased extinction and evolutionary trends. Paleobiology 17:388399.CrossRefGoogle Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A., and Huber, B. T. 1999. Atlas of Paleocene planktonic foraminifera. Smithsonian Contributions to Paleobiology 85:1252.CrossRefGoogle Scholar
Pearson, P. N., Olson, R. K., Huber, B. T., Hemleben, C., and Berggren, W. A., eds. 2006. Atlas of Eocene planktonic foraminifera. Cushman Foundation Special Publication 41. Cushman Foundation, Washington, D.C.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.CrossRefGoogle ScholarPubMed
Peters, S. E., and Foote, M., 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.2.0.CO;2>CrossRefGoogle Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.CrossRefGoogle ScholarPubMed
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History 13:8591.Google Scholar
R Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org.Google Scholar
Sepkoski, J. J. 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.CrossRefGoogle ScholarPubMed
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.CrossRefGoogle ScholarPubMed
Smith, A. B., and McGowan, A. J. 2007. The shape of the Phanerozoic diversity curve: how much can be predicted from the sedimentary rock record of Western Europe? Palaeontology 50:765777.CrossRefGoogle Scholar
Spencer-Cervato, C. 1999. The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune Database. Palaeontologica Electronica 2:4.Google Scholar
Spezzaferri, S. 1994. Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record: an overview. Palaeontographica Italica 81:1187.Google Scholar
Stewart, D. R. M., and Pearson, P. N. 2000. PLANKRANGE: a database of planktonic foraminiferal ranges. Electronic database with documentation available athttp://palaeo.gly.bris.ac.uk/Data/plankrange.html (updated December 2002)Google Scholar
Tappan, H., and Loeblich, A. R. Jr. 1973. Evolution of the oceanic plankton. Earth-Science Reviews 9:207240.CrossRefGoogle Scholar
Wade, B. S., Pearson, P. N., Berggren, W. A., and Pälike, H. 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic astronomical time scale. Earth-Science Reviews 104:111142.CrossRefGoogle Scholar