Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-13T17:20:00.651Z Has data issue: false hasContentIssue false

Long in the tooth: evolution of sabertooth cat cranial shape

Published online by Cambridge University Press:  08 April 2016

Graham J. Slater
Affiliation:
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606. E-mail: gslater@ucla.edu
Blaire Van Valkenburgh
Affiliation:
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606. E-mail: gslater@ucla.edu

Abstract

Sabertooths exhibit one of the most extreme feeding adaptations seen in mammals. The functional consequences of accommodating extremely elongate upper canine teeth are severe, resulting in a well-documented suite of cranial modifications. We used geometric morphometric methods to study the evolution of overall shape in the skulls of extant and extinct feline and machairodontine felids, as well as extinct nimravids. Trends in skull evolution were evaluated by using relative warps analysis and tested for association with body size and canine tooth length. Primitive sabertooths from all lineages exhibit cranial shapes more similar to conical-toothed cats, despite the presence of moderately developed saberteeth. More-derived forms in both nimravids and felids diverge in skull morphospace to form two distinct sabertooth types (dirk-toothed and scimitar-toothed) that differ in canine shape. Skull shape in conical-toothed cats is strongly associated with body size, but not canine length. However, within each sabertooth lineage, skull shape is significantly correlated with canine length, suggesting that gape-related demands drove the evolution of sabertooth skull morphology.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, D. B. 1979. The cheetah: native American. Science 205:11551158.Google Scholar
Akersten, W. A. 1985. Canine function in Smilodon (Mammalia; Felidae; Machairodontinae). Los Angeles County Museum Contributions in Science 356:122.Google Scholar
Antón, M., Galobart, A., and Turner, A. 2005. Co-existence of scimitar-toothed cats, lions and hominins in the European Pleistocene: implications of the post-cranial anatomy of Homotherium latidens (Owen) for comparative palaeoecology. Quaternary Science Review 24:12871301.CrossRefGoogle Scholar
Antón, M., Salesa, M. J., Morales, J., and Turner, A. 2004a. First known complete skulls of the scimitar-toothed cat Machairodus aphanistus (Felidae, Carnivora) from the Spanish Late Miocene site of Batallones-1. Journal of Vertebrate Paleontology 24:957969.CrossRefGoogle Scholar
Antón, M., Salesa, M. J., Pastor, J. F., Sanchez, I. M., Fraile, S., and Morales, J. 2004b. implications of the mastoid anatomy of larger extant felids for the evolution and predatory behaviour of sabretoothed cats (Mammalia, Carnivora, Felidae). Zoological Journal of the Linnean Society 140:207221.CrossRefGoogle Scholar
Anyonge, W. 1996. Locomotor behaviour in Plio-Pleistocene sabre-toothed cats: a biomechanical analysis. Journal of Zoology 238:395413.Google Scholar
Bailey, T. N. 1993. The African leopard: ecology and behavior of a solitary felid. Columbia University Press, New York.CrossRefGoogle Scholar
Barnett, R., Barnes, I., Phillips, M. J., Martin, L. D., Harington, C. R., Leonard, J. A., and Cooper, A. 2005. Evolution of the extinct sabretooths and the American cheetah-like cat. Current Biology 15:R589R590.CrossRefGoogle ScholarPubMed
Biknevicius, A. R., Van Valkenburgh, B., and Walker, J. 1996. Incisor size and shape: implications for feeding behavior in sabertoothed “cats.” Journal of Vertebrate Paleontology 16:510521.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data. Cambridge University Press, Cambridge.Google Scholar
Bryant, H. N. 1988. Delayed eruption of the deciduous upper canine in the sabertoothed carnivore Barbourofelis lovei (Carnivora, Nimravidae). Journal of Vertebrate Paleontology 8:295306.Google Scholar
Bryant, H. N. 1996a. Force generation by the jaw adductor musculature at different gapes in the Pleistocene sabertoothed felid Smilodon. Pp. 283299 in Stewart, K. M. and Seymour, K. L., eds. Palaeoecology and palaeoenvironments of Late Cenozoic mammals—tributes to the career of C. S. (Rufus) Churcher. University of Toronto Press, Toronto.Google Scholar
Bryant, H. N. 1996b. Nimravidae. Pp. 453475 in Prothero, D. R. and Emry, R. J., eds. The terrestrial Eocene-Oligocene transition in North America. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Chang, H.-C. 1957. On new material of some machairodonts of Pontian age from Shansi. Vertebrata Palasiatica 1:193200.Google Scholar
Christiansen, P. 2006. Sabertooth characters in the clouded leopard (Neofelis nebulosa Griffiths 1821). Journal of Morphology 267:11861198.CrossRefGoogle ScholarPubMed
Christiansen, P. 2008. Evolutionary convergence of primitive sabertooth craniomandibular morphology: the clouded leopard (Neofelis nebulosa) and Paramachairodus ogygia compared. Journal of Mammalian Evolution. doi 10.1007/sl0914-007-9069-z Google Scholar
Cope, E. D. 1880. On the extinct cats of North America. American Naturalist 14:833858.Google Scholar
Creel, S. 2001. Four factors modifying the effect of competition on carnivore population dynamics as illustrated by African wild dogs. Conservation Biology 15:271274.Google Scholar
Dawson, M. R., Stucky, R. K., Krishtalka, L., and Black, C. C. 1986. Machaeroides simpsoni, new species, oldest known sabertooth creodont (Mammalia), of Lost Cabin Eocene. Contributions to Geology, University of Wyoming, Special Paper 3:177182.Google Scholar
Eaton, G. F. 1922. John Day Felidae in the Marsh Collection. American Journal of Science 204:425452.CrossRefGoogle Scholar
Emerson, S. B., and Radinsky, L. 1980. Functional analysis of sabertooth cranial morphology. Paleobiology 6:295312.CrossRefGoogle Scholar
Ewer, R. F. 1973. The carnivores. Weidenfeld and Nicolson, London.Google Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.Google Scholar
Ficarrelli, G. 1979. The Villafranchian machairodonts of Tuscany. Palaeontographia Italica 71:1726.Google Scholar
Freeman, P. W., and Lemen, C. 2006. Puncturing ability of idealized canine teeth: edged and non-edged shanks. Journal of Zoology 269:5156.Google Scholar
Friscia, A. R., Van Valkenburgh, B., and Biknevicius, A. R. 2006. An ecomorphological analysis of extant small carnivorans. Journal of Zoology 272:82100.CrossRefGoogle Scholar
Futuyma, D. J. 1986. Evolutionary biology, 2d ed. Sinauer, Sunderland, Mass. Google Scholar
Gittleman, J. L., and Van Valkenburgh, B. 1997. Sexual dimorphism in the canines and skulls of carnivores: effects of size, phylogeny, and behavioural ecology. Journal of Zoology 242:97117.Google Scholar
Gordon, J. E. 1978. Structures, or why things don't fall down. Da Capo Press, New York.Google Scholar
Gorniak, G. C., and Gans, C. 1980. Quantitative assay of electromyograms during mastication in domestic cats (Felis catus). Journal of Morphology 163:253281.CrossRefGoogle ScholarPubMed
Herring, S. W. 1975. Adaptations for gape in the hippopotamus and its relatives. Forma et Functio 8:85100.Google Scholar
Holliday, J. A., and Steppan, S. J. 2004. Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. Paleobiology 30:108128.Google Scholar
Hunt, R. M. Jr. 1987. Evolution of the aeluroid Carnivora: significance of auditory structure in the nimravid cat Dinictis . American Museum Novitates 2886:174.Google Scholar
Jefferson, G. T., and Tejada-Flores, A. E. 1993. The Late Pleistocene record of Homotherium (Felidae: Machairodontinae) in the Southwestern United States. PaleoBios 15:3746.Google Scholar
Jepson, G. L. 1933. American eusmiloid sabre-tooth cats of the Oligocene epoch. Proceedings of the American Philosophical Society 72:355369.Google Scholar
Johnson, W. E., Eizirik, E., Pecon-Slattery, J., Murphy, W. J., Antunes, A., Teeling, E., and O'Brien, S. J. 2006. The Late Miocene radiation of modern Felidae: a genetic assessment. Science 311:7377.Google Scholar
Kiltie, R. A. 1984. Size ratios among sympatric neotropical cats. Oecologia 61:411416.Google Scholar
Kiltie, R. A. 1988. Interspecific size regularities in tropical felid assemblages. Oecologia 76:97105.Google Scholar
Kurtén, B. 1968. Pleistocene mammals of Europe. Aldine, Chicago.Google Scholar
Kurtén, B., and Werdelin, L. 1990. Relationships between North and South American Smilodon . Journal of Vertebrate Paleontology 10:158169.Google Scholar
Leonard, J. A., Vila, C., Fox-Dobbs, K., Koch, P. L., Wayne, R. K., and Van Valkenburgh, B. 2007. Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Current Biology 17:11461150.Google Scholar
Leyhausen, P. 1979. Cat behavior: the predatory and social behavior of domestic and wild cats. Garland STPM Press, New York.Google Scholar
Maddison, W. P., and Maddison, D. R. 2006. Mesquite: a modular system for evolutionary analysis, Version 1.12. http://mesquiteproject.org.Google Scholar
Martin, L. D. 1980. Functional morphology and the evolution of cats. Transactions of the Nebraska Academy of Sciences 8:141154.Google Scholar
Martin, L. D. 1998a. Nimravidae. Pp. 228235 in Janis, C. M., Scott, K. M., and Jacobs, L. L., eds. Evolution of Tertiary mammals of North America, Vol. 1. Terrestrial carnivores, ungulates and ungulate-like mammals. Cambridge University Press, Cambridge.Google Scholar
Martin, L. D. 1998b. Felidae. Pp. 236242 in Janis, C. M., Scott, K. M., and Jacobs, L. L., eds. Evolution of Tertiary mammals of North America, Vol. 1. Terrestrial carnivores, ungulates and ungulate-like mammals. Cambridge University Press, Cambridge.Google Scholar
Matthew, W. D. 1910. The phylogeny of the Felidae. Bulletin of the American Museum of Natural History 27:289316.Google Scholar
McHenry, C. R., Wroe, S., Clausen, P. D., Moreno, K., and Cunningham, E. 2007. Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer simulation. Proceedings of the National Academy of Sciences USA 104:1601016015.Google Scholar
Midford, P. E., Garland, T. Jr., and Maddison, W. P. 2005. PDAP Package of Mesquite. Version 1.07. http://mesquiteproject.org/pdap_mesquite/index.html Google Scholar
Morlo, M. 2006. New remains of Barbourofelidae (Mammalia, Carnivora) from the Miocene of Southern Germany: implications for the history of barbourofelid migrations. Beiträge zur Paläontologie 30:339346.Google Scholar
Palmqvist, P., Grocke, D. R., Arribas, A., and Farina, R. A. 2003. Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13 C, δ15N, δ18O, Sr: Zn) and ecomorphological approaches. Paleobiology 29:205229.Google Scholar
Peigné, S. 2001. A primitive nimravine skull from the Quercy fissures, France: implications for the origin and evolution of Nimravidae (Carnivora). Zoological Journal of the Linnean Society 132:401410.Google Scholar
Peigné, S. 2003. Systematic review of European Nimravinae (Mammalia, Carnivora, Nimravidae) and the phylogenetic relationships of Paleogene Nimravidae. Zoologica Scripta 32:199229.Google Scholar
Qiang, J., Zhexi, L., and Shu-an, J. 1999. A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature 398:326330.Google Scholar
Radinsky, L. 1981. Evolution of skull shape in carnivores. 1. Representative modern carnivores. Biological Journal of the Linnean Society 15:369388.Google Scholar
Rae, T. C. 1999. Mosaic evolution in the origin of the Hominoidea. Folia Primatologica 70:125135.Google Scholar
Rasband, W. S. 2006. ImageJ, v. 1.37. U.S. National Institutes of Health, Bethesda, Md. http://rsb.info.nih.gov/ij/ Google Scholar
Rawn-Schatzinger, V. 1992. The scimitar cat Homotherium serum Cope: osteology, functional morphology, and predatory behavior. Illinois State Museum Reports of Investigations 47:180.Google Scholar
Riggs, E. S. 1934. A new marsupial saber-tooth from the Pliocene of Argentina and its relationships to other South American predacious marsupials. Transactions of the American Philosophical Society 24:132.Google Scholar
Rohlf, F. J. 1993. Relative-warp analysis and an example of its application to mosquito wings. Pp. 131159 in Marcus, L. F., Bello, E., and García-Valdecasas, A., eds. Contributions to morphometrics, Vol. 8. Museo Nacional de Ciencias Naturales, Madrid.Google Scholar
Rohlf, F. J. 2004a. tpsDig, digitize landmarks and outlines, Version 1.40. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
Rohlf, F. J. 2004b. tpsRegr, shape regression, Version 1.30. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
Rohlf, F. J. 2005. tpsRelw, relative warps analysis, Version 1.42. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
Sacco, T., and Van Valkenburgh, B. 2004. Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). Journal of Zoology 263:4154.Google Scholar
Salesa, M. J., Antón, M., Turner, A., and Morales, J. 2005. Aspects of the functional morphology in the cranial and cervical skeleton of the sabretoothed cat Paramachairodus ogygia (Kaup, 1832) (Felidae, Machairodontinae) from the Late Miocene of Spain: implications for the origins of the machairodont killing bite. Zoological Journal of the Linnean Society 144:363377.CrossRefGoogle Scholar
Salesa, M. J. 2006. Inferred behaviour and ecology of the primitive sabre-toothed cat Paramachairodus ogygia (Felidae, Machairodontinae) from the Late Miocene of Spain. Journal of Zoology 268:243254.Google Scholar
Schaller, G. B. 1972. The Serengeti lion: a study of predator-prey relations. University of Chicago Press, Chicago.Google Scholar
Schultz, C. B., Schultz, M. R., and Martin, L. D. 1970. A new tribe of sabertoothed cats (Barbourofelini) from the Pliocene of North America. Bulletin of the Nebraska State Museum 9:131.Google Scholar
Simpson, G. G. 1941. The function of saber-like canines in carnivorous mammals. American Museum Novitates 1130:112.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry, 3d ed. W. H. Freeman, New York.Google Scholar
Stayton, C. T. 2006. Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 60:824841.Google Scholar
Sunquist, M. E., and Sunquist, F. 2002. Wild cats of the world. University of Chicago Press, Chicago.Google Scholar
Therrien, F. 2005. Feeding behaviour and bite force of sabretoothed predators. Zoological Journal of the Linnean Society 145:393426.Google Scholar
Turner, A. and Antón, M. 1997. The big cats and their fossil relatives: an illustrated guide to their evolution and natural history. Columbia University Press, New York.Google Scholar
Van Valkenburgh, B. 1985. Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology 11:406428.Google Scholar
Van Valkenburgh, B. 1988. Trophic diversity in past and present guilds of large predatory mammals. Paleobiology 14:155173.Google Scholar
Van Valkenburgh, B. 1989. Carnivore dental adaptations and diet: a study of trophic diversity within guilds. Pp. 410436 in Gittleman, J. L., ed. Carnivore behavior, ecology, and evolution, Vol. 1. Cornell University Press, Ithaca, N.Y. Google Scholar
Van Valkenburgh, B. 1995. Tracking ecology over geological time: evolution within guilds of vertebrates. Trends in Ecology and Evolution 10:7176.Google Scholar
Van Valkenburgh, B. 1999. Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Sciences 27: 463–93.Google Scholar
Van Valkenburgh, B. 2001. Predation in sabre-tooth cats. Pp. 420423 in Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology II. Blackwell Science, Oxford.CrossRefGoogle Scholar
Van Valkenburgh, B. 2007. Déjà vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology 47:147163.Google Scholar
Van Valkenburgh, B., Grady, F., and Kurtén, B. 1990. The Plio-Pleistocene cheetah-like cat Miracinonyx inexpectatus of North America. Journal of Vertebrate Paleontology 10:434454.Google Scholar
Van Valkenburgh, B., and Hertel, F. 1993. Tough times at La Brea: tooth breakage in large carnivores of the late Pleistocene. Science 261:456459.CrossRefGoogle Scholar
Van Valkenburgh, B., and Koepfli, K.-P. 1993. Cranial and dental adaptations to predation in canids. Symposium of the Zoological Society of London 65:1537.Google Scholar
Van Valkenburgh, B., and Ruff, C. B. 1987. Canine tooth strength and killing behaviour in large carnivores. Journal of Zoology 222:379397.CrossRefGoogle Scholar
Van Valkenburgh, B., and Sacco, T. 2002. Sexual dimorphism and intra-sexual competition in large Pleistocene carnivores. Journal of Vertebrate Paleontology 22:164169.Google Scholar
Van Valkenburgh, B., Wang, X., and Damuth, J. 2004. Cope's rule, hypercarnivory, and extinction in North American canids. Science 306:101104.Google Scholar
Werdelin, L. 1983. Morphological patterns in the skulls of cats. Biological Journal of the Linnean Society 19:375391.Google Scholar
Werdelin, L., and Lewis, M. E. 2001. A revision of the genus Dinofelis (Mammalia, Felidae). Zoological Journal of the Linnean Society 132:147258.Google Scholar
Werdelin, L., and Sardella, R. 2006. The “Homotherium” from Langebaanweg, South Africa and the origin of Homotherium . Palaeontographica, Abteilung A 277:123130.Google Scholar
Wesley-Hunt, G. D. 2005. The morphological diversification of carnivores in North America. Paleobiology 31:3555.Google Scholar
Wesley-Hunt, G. D., and Flynn, J. J. 2005. Phylogeny of the Carnivora: basal relationships among carnivoramorphans, and assessment of the position of ‘Miacoidea’ relative to Carnivora. Journal of Systematic Palaeontology 3:128.Google Scholar
Wroe, S., McHenry, C., and Thomason, J. 2005. Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proceedings of the Royal Society of London B 272:619625.Google Scholar
Zelditch, M. L., Swinderski, D. L., Sheets, H. D., and Fink, W. L. 2004. Geometric morphometrics for biologists: a primer. Elsevier Academic Press, San Diego.Google Scholar