Hostname: page-component-5d59c44645-lfgmx Total loading time: 0 Render date: 2024-02-26T19:19:03.291Z Has data issue: false hasContentIssue false

Deep-sea ostracod faunal dynamics in a marginal sea: biotic response to oxygen variability and mid-Pleistocene global changes

Published online by Cambridge University Press:  23 November 2018

Huai-Hsuan May Huang
Affiliation:
Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong. E-mail: huanghuaihsuan@gmail.com, moriakiyasuhara@gmail.com, hokuto.iwatani@gmail.com, blmamo@gmail.com
Moriaki Yasuhara
Affiliation:
Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong. E-mail: huanghuaihsuan@gmail.com, moriakiyasuhara@gmail.com, hokuto.iwatani@gmail.com, blmamo@gmail.com
Hokuto Iwatani
Affiliation:
Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong. E-mail: huanghuaihsuan@gmail.com, moriakiyasuhara@gmail.com, hokuto.iwatani@gmail.com, blmamo@gmail.com
Tatsuhiko Yamaguchi
Affiliation:
Center for Advanced Marine Core Research, Kochi University, Monobe B200, Nankoku, 8 Kochi 783-8502, Japan. E-mail: aka.tyam.aguchi032018@gmail.com.
Katsura Yamada
Affiliation:
Department of Geology, Shinshu University, Matsumoto 390-8621, Japan. E-mail: katsurai@shinshu-u.ac.jp
Briony Mamo
Affiliation:
Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong. E-mail: huanghuaihsuan@gmail.com, moriakiyasuhara@gmail.com, hokuto.iwatani@gmail.com, blmamo@gmail.com

Abstract

Deep-sea benthic ostracod assemblages covering the last 2 Myr were investigated in Integrated Ocean Drilling Program Site U1426 (at 903 m water depth) in the southern Sea of Japan. Results show that (1) orbital-scale faunal variability has been influenced by eustatic sea-level fluctuations and oxygen variability and (2) secular-scale faunal transitions are likely associated with the mid-Brunhes event (MBE, ~0.43 Ma) and the onset of the Tsushima Warm Current (TWC, ~1.7 Ma). Krithe, Robertsonites, and Acanthocythereis are the three most abundant genera throughout the core, accounting for 78.5% of total specimens. Multiple-regression tree analysis indicated that the TWC, the MBE, and oxygen content are the significant controlling factors of ostracod dominance. Changes in assemblages exhibit decline and recovery patterns corresponding to orbital-scale cyclicity of sea-level changes. In the Sea of Japan marginal ocean setting, this cyclicity shows a close relationship with bottom-water oxygen variability since the onset of the TWC influx. The MBE amplified the influence of the TWC and oxygen variability to the deep-sea ecosystem through larger sea-level fluctuations. Acanthocythereis dunelmensis, a circumpolar species, dominates before the TWC onset. After the TWC onset and during the mid-Pleistocene transition (MPT, ~1.2–0.7 Ma) Krithe spp., known for their low-oxygen tolerance, substantially increase under moderate oxygen depletion. At the end of the MPT, Krithe dominance diminishes and is replaced by Robertsonites hanaii and Propontocypris spp. after the MBE. The post-MBE assemblage, characterized by R. hanaii, suggests a slightly warmer environment under the development of the TWC. In addition, the post-MBE high-amplitude climate system may have caused the increased abundance of active-swimming Propontocypris spp. due to their superior migration ability. Benthic ecosystems in marginal seas are sensitive and vulnerable to both short- and long-term climatic changes, and the MBE is suggested to be a global biotic event affecting benthic ecosystems substantially.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: 1528-3 Osoneotsu, Nankoku, 783-0005, Japan.

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.43vk5fm

References

Literature Cited

Alvarez Zarikian, C., Stepanova, A. Y., and Grützner, J.. 2009. Glacial–interglacial variability in deep sea ostracod assemblage composition at IODP Site U1314 in the subpolar North Atlantic. Marine Geology 258:6987.Google Scholar
Amano, K. 2007. The Omma-Manganji fauna and its temporal change. Fossils 82:612.Google Scholar
Black, H. D., Anderson, W. T., and Alvarez Zarikian, C. A.. 2018. Data report: organic matter, carbonate, and stable isotope stratigraphy from IODP Expedition 346 Sites U1426, U1427, and U1429. In Tada, R., Murray, R. W., Alvarez Zarikian, C. A., and the Expedition 346 Scientists, eds. Proceedings of the Integrated Ocean Drilling Program, 346. College Station, Tex. http://publications.iodp.org/proceedings/346/ERR/CHAPTERS/346_204.PDF, accessed 5 October 2018.Google Scholar
Borcard, D., Gillet, F., and Legendre, P.. 2011. Numerical ecology with R. Springer, New York.Google Scholar
Braeckman, U., Vanaverbeke, J., Vincx, M., van Oevelen, D., and Soetaert, K.. 2013. Meiofauna metabolism in suboxic sediments: currently overestimated. PLoS ONE 8:e59289.Google Scholar
Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin, V., Mix, A. C., Pisias, N. G., and Roy, M.. 2006. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews 25:31503184.Google Scholar
Cronin, T. M. 2009. Paleoclimates: understanding climate change past and present. Columbia University Press, New York.Google Scholar
Cronin, T. M., and Ikeya, N.. 1987. The Omma-Manganji ostracod fauna (Plio-Pleistocene) of Japan and the zoogeography of circumpolar species. Journal of Micropalaeontology 6:6588.Google Scholar
Cronin, T. M., and Raymo, M. E.. 1997. Orbital forcing of deep-sea benthic species diversity. Nature 385:624627.Google Scholar
Cronin, T. M., Kitamura, A., Ikeya, N., Watanabe, M., and Kamiya, T.. 1994. Late Pliocene climate change 3.4–2.3 Ma: paleoceanographic record from the Yabuta Formation, Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 108:437455.Google Scholar
Cronin, T. M., Raymo, M. E., and Kyle, K. P.. 1996. Pliocene (3.2–2.4 Ma) ostracode faunal cycles and deep ocean circulation, North Atlantic Ocean. Geology 24:695698.Google Scholar
Cronin, T. M., DeNinno, L. H., Polyak, L., Caverly, E. K., Poore, R. Z., Brenner, A., Rodriguez-Lazaro, J., and Marzen, R. E.. 2014. Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean. Marine Micropaleontology 111:118133.Google Scholar
Cronin, T. M., Dwyer, G. S., Caverly, E. K., Farmer, J., DeNinno, L. H., Rodriguez-Lazaro, J., and Gemery, L.. 2017. Enhanced Arctic amplification began at the mid-Brunhes event ~400,000 years ago. Scientific Reports 7:14475.Google Scholar
Crundwell, M., Scott, G., Naish, T., and Carter, L.. 2008. Glacial–interglacial ocean climate variability from planktonic foraminifera during the mid-Pleistocene transition in the temperate southwest Pacific, ODP Site 1123. Palaeogeography, Palaeoclimatology, Palaeoecology 260:202229.Google Scholar
De'ath, G. 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83:11051117.Google Scholar
DeNinno, L. H., Cronin, T. M., Rodriguez-Lazaro, J., and Brenner, A.. 2015. An early to mid-Pleistocene deep Arctic Ocean ostracode fauna with North Atlantic affinities. Palaeogeography, Palaeoclimatology, Palaeoecology 419:9099.Google Scholar
Didié, C., Bauch, H. A., and Helmke, J. P.. 2002. Late Quaternary deep-sea ostracodes in the polar and subpolar North Atlantic: paleoecological and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 184:195212.Google Scholar
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D., and Piotrowski, A. M.. 2012. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337:704709.Google Scholar
Gallagher, S. J., Kitamura, A., Iryu, Y., Itaki, T., Koizumi, I., and Hoiles, P. W.. 2015. The Pliocene to recent history of the Kuroshio and Tsushima Currents: a multi-proxy approach. Progress in Earth and Planetary Science 2:123.Google Scholar
Hayward, B. W., Kawagata, S., Grenfell, H. R., Droxler, A. W., and Shearer, M.. 2006. Mid-Pleistocene extinction of bathyal benthic foraminifera in the Caribbean Sea. Micropaleontology 52:245265.Google Scholar
Hayward, B. W., Kawagata, S., Grenfell, H. R., Sabaa, A. T., and O'Neill, T.. 2007. Last global extinction in the deep sea during the mid-Pleistocene climate transition. Paleoceanography 22:PA3103.Google Scholar
Hayward, B. W., Sabaa, A. T., Kawagata, S., and Grenfell, H. R.. 2009. The Early Pliocene re-colonisation of the deep Mediterranean Sea by benthic foraminifera and their pulsed Late Pliocene–Middle Pleistocene decline. Marine Micropaleontology 71:97112.Google Scholar
Hayward, B., Kawagata, S., Sabaa, A., Grenfell, H., van Kerckhoven, L., Lewandowski, K., and Thomas, E. 2012. The last global extinction (mid-Pleistocene) of deep sea benthic foraminifera (Chrysalogoniidae, Ellipsoidinidae, Glandulonodosariidae, Plectofrondiculariidae, Pleurostomellidae, Stilostomellidae), their Late Cretaceous–Cenozoic history and taxonomy. Cushman Foundation for Foraminiferal Research Special Publication no. 43. Fredericksburg, Virginia.Google Scholar
Horne, D J, Whittaker, J. E. 1988. On Cytheropteron latissimum (Norman). Stereo-Atlas of Ostracod Shells 15:127132.Google Scholar
Huang, H. M., Yasuhara, M., Iwatani, H., Alvarez Zarikian, C. A., Bassetti, M., and Sagawa, T.. 2018. Benthic biotic response to climate changes over the last 700,000 years in a deep marginal sea: impacts of deoxygenation and the mid Brunhes event. Paleoceanography and Paleoclimatology 33:766777.Google Scholar
Ikehara, K. 2015. Marine tephra in the Japan Sea sediments as a tool for paleoceanography and paleoclimatology. Progress in Earth and Planetary Science 2:36.Google Scholar
Ikehara, K., and Itaki, T.. 2007. Millennial-scale fluctuations in seasonal sea-ice and deep-water formation in the Japan Sea during the late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 247:131143.Google Scholar
Ikeya, N., and Suzuki, C.. 1992. Distributional patterns of modern ostracodes off Shimane Peninsula, southwestern Japan Sea. Report of Faculty of Science, Shizuoka University 26:91137.Google Scholar
Irino, T., Tada, R., Ikehara, K., Sagawa, T., Karasuda, A., Kurokawa, S., Seki, A., and Lu, S.. 2018. Construction of perfectly continuous records of physical properties for dark–light sediment sequences collected from the Japan Sea during Integrated Ocean Drilling Program Expedition 346 and their potential utilities as paleoceanographic studies. Progress in Earth and Planetary Science 5:23.Google Scholar
Irizuki, T., Yamada, K., Maruyama, T., and Ito, H.. 2004. Paleoecology and taxonomy of Early Miocene Ostracoda and paleoenvironments of the eastern Setouchi Province, central Japan. Micropaleontology 50:105147.Google Scholar
Ishizaki, K., and Irizuki, T.. 1990. Distribution of bathyal ostracodes in sediments of Toyama Bay, Central Japan. Courier Forschungsinstitut Senckenberg 123:5367.Google Scholar
Itaki, T. 2016. Transitional changes in microfossil assemblages in the Japan Sea from the Late Pliocene to Early Pleistocene related to global climatic and local tectonic events. Progress in Earth and Planetary Science 3:121.Google Scholar
Itaki, T., Ikehara, K., Motoyama, I., and Hasegawa, S.. 2004. Abrupt ventilation changes in the Japan Sea over the last 30 ky: evidence from deep-dwelling radiolarians. Palaeogeography, Palaeoclimatology, Palaeoecology 208:263278.Google Scholar
Itaki, T., Komatsu, N., and Motoyama, I.. 2007. Orbital- and millennial-scale changes of radiolarian assemblages during the last 220 kyrs in the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 247:115130.Google Scholar
Kato, M., 1992. Benthic foraminifers from the Japan Sea: Leg 128. In Pisciotto, K. A., Ingle, J. C. Jr., von Breymann, M. T., Barron, J., et al. , eds. Proceedings of the Integrated Ocean Drilling Program, Scientific Results, 127/128(Part 1): 577–601. Ocean Drilling Program, College Station, Tex.Google Scholar
Kawagata, S., Hayward, B. W., Grenfell, H. R., and Sabaa, A.. 2005. Mid-Pleistocene extinction of deep-sea foraminifera in the North Atlantic Gateway (ODP sites 980 and 982). Palaeogeography, Palaeoclimatology, Palaeoecology 221:267291.Google Scholar
Kawagata, S., Hayward, B. W., and Gupta, A. K.. 2006. Benthic foraminiferal extinctions linked to late Pliocene–Pleistocene deep-sea circulation changes in the northern Indian Ocean (ODP Sites 722 and 758). Marine Micropaleontology 58:219242.Google Scholar
Kawagata, S., Hayward, B. W., and Kuhnt, W.. 2007. Extinction of deep-sea foraminifera as a result of Pliocene–Pleistocene deep-sea circulation changes in the South China Sea (ODP Sites 1143 and 1146). Quaternary Science Reviews 26:808827.Google Scholar
Kheradyar, T., 1992. Pleistocene planktonic foraminiferal assemblages and paleotemperature fluctuations in Japan Sea, Site 798. In Pisciotto, K. A., Ingle, J. C. Jr., von Breymann, M. T., Barron, J., et al. , eds. Proceedings of the Integrated Ocean Drilling Program, Scientific Results, 127/128(Part 1): 577–601. Ocean Drilling Program, College Station, Tex.Google Scholar
Khim, B. K., Tada, R., Park, Y. H., Bahk, J. J., Kido, Y., Itaki, T., and Ikehara, K.. 2009. Correlation of TL layers for the synchronous paleoceanographic events in the East Sea (Sea of Japan) during the Late Quaternary. Geosciences Journal 13:113120.Google Scholar
Kido, Y., Minami, I., Tada, R., Fujine, K., Irino, T., Ikehara, K., and Chun, J.-H.. 2007. Orbital-scale stratigraphy and high-resolution analysis of biogenic components and deep-water oxygenation conditions in the Japan Sea during the last 640 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology 247:3249.Google Scholar
Kitamura, A. 2016. Constraints on eustatic sea-level changes during the mid-Pleistocene climate transition: evidence from the Japanese shallow-marine sediment record. Quaternary International 397:417421.Google Scholar
Kitamura, A., and Kawagoe, T.. 2006. Eustatic sea-level change at the mid-Pleistocene climate transition: new evidence from the shallow-marine sediment record of Japan. Quaternary Science Reviews 25:323335.Google Scholar
Lazar, K. B., and Polyak, L.. 2016. Pleistocene benthic foraminifers in the Arctic Ocean: implications for sea-ice and circulation history. Marine Micropaleontology 126:1930.Google Scholar
Lisiecki, L. E., and Raymo, M. E.. 2007. Plio-Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quaternary Science Reviews 26:5669.Google Scholar
Maddocks, R. F. 1969. Recent ostracodes of the Family Pontocyprididae chiefly from the Indian Ocean. Smithsonian Contributions to Zoology 7:156.Google Scholar
Majoran, S., and Agrenius, S.. 1995. Preliminary observations on living Krithe praetexta praetexta (Sars, 1866), Sarsicytheridea brudii (Norman, 1865) and other marine ostracods in aquaria. Journal of Micropalaeontology 14:96.Google Scholar
McKenzie, K. G., Majoran, S., Emami, V., and Reyment, R. A.. 1989. The KRITHE problem—first test of peypouquet's hypothesis, with a redescription of KRITHE PRAETEXTA PRAETEXTA (crustacea, ostracoda). Palaeogeography, Palaeoclimatology, Palaeoecology 74:343354.Google Scholar
Ouellette, M. H., and Legendre, P.. 2013. MVPARTwrap: additional features for package mvpart. R package, Version 0.1-9. http://www.r-project.org, accessed 5 October 2018.Google Scholar
Ouellette, M. H., Legendre, P., and Borcard, D.. 2012. Cascade multivariate regression tree: a novel approach for modelling nested explanatory sets. Methods in Ecology and Evolution 3:234244.Google Scholar
Ozawa, H. 2016. Early to Middle Miocene ostracods from the Yatsuo Group, Central Japan: significance for the Bathyal Fauna between Japan Sea and Northwest Pacific Ocean during the back-arc spreading. Paleontological Research 20:121144.Google Scholar
Ozawa, H., and Kamiya, T.. 2005a. Ecological analysis of benthic ostracods in the northern Japan Sea, based on water properties of modern habitats and late Cenozoic fossil records. Marine Micropaleontology 55:255276.Google Scholar
Ozawa, H., and Kamiya, T.. 2005b. The effects of glacio-eustatic sea-level change on Pleistocene cold-water ostracod assemblages from the Japan Sea. Marine Micropaleontology 54:167189.Google Scholar
Ozawa, H., Nagamori, H., and Tanabe, T.. 2008. Pliocene ostracods (Crustacea) from the Togakushi area, central Japan; palaeobiogeography of trans-Arctic taxa and Japan Sea endemic species. Journal of Micropalaeontology 27:161175.Google Scholar
Pante, E., and Simon-Bouhet, B.. 2013. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8:e73051.Google Scholar
Polyak, L., Best, K. M., Crawford, K. A., Council, E. A., and St-Onge, G.. 2013. Quaternary history of sea ice in the western Arctic Ocean based on foraminifera. Quaternary Science Reviews 79:145156.Google Scholar
R Core Team, 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Sagawa, T., Nagahashi, Y., Satoguchi, Y., Holbourn, A., Itaki, T., Gallagher, S. J., Saavedra-Pellitero, M., Ikehara, K., Irino, T., and Tada, R.. 2018. Integrated tephrostratigraphy and stable isotope stratigraphy in the Japan Sea and East China Sea using IODP Sites U1426, U1427, and U1429, Expedition 346 Asian Monsoon. Progress in Earth and Planetary Science 5:18.Google Scholar
Schönfeld, J. 1996. The “Stilostomella extinction” structure and dynamics of the last turnover in deep-sea benthic foraminiferal assemblages. Pp. 2737 in Moguilevsky, A. and Whatley, R. C., eds. Microfossils and oceanic environments. ODP and the Marine Biosphere International Conference, Aberystwyth, United Kingdom, April 19–21, 1994. University of Wales, Aberystwyth-Press, Aberystwyth, U.K.Google Scholar
Stax, R., and Stein, R.. 1994. Quaternary organic carbon cycles in the Japan Sea (ODP-site 798) and their paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 108:509521.Google Scholar
Tada, R. 1994. Paleoceanographic evolution of the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 108:487508.Google Scholar
Tada, R., Koizumi, I., Cramp, A., and Rahman, A., 1992. Correlation of dark and light layers and the origin of their cyclicity in the Quaternary sediments from the Japan Sea. In Pisciotto, K. A., Ingle, J. C. Jr., von Breymann, M. T., Barron, J., et al. , eds. Proceedings of the Integrated Ocean Drilling Program, Scientific Results, 127/128(Part 1): 577–601. Ocean Drilling Program, College Station, Tex.Google Scholar
Tada, R., Irino, T., and Koizumi, I.. 1999. Land–ocean linkages over orbital and millennial timescales recorded in late Quaternary sediments of the Japan Sea. Paleoceanography 14:236247.Google Scholar
Tada, R., Murray, R. W., Alvarez Zarikian, C. A., and Expedition 371 Scientists, eds. 2015. Proceedings of the Integrated Ocean Drilling Program, 346. College Station, Tex.Google Scholar
Tada, R., Irino, T., Ikehara, K., Karasuda, A., Sugisaki, S., Xuan, C., Sagawa, T., Itaki, T., Kubota, Y., Lu, S., Seki, A., Murray, R. W., Alvarez-Zarikian, C., Anderson, W. T., Bassetti, M.-A., Brace, B. J., Clemens, S. C., da Costa Gurgel, M. H., Dickens, G. R., Dunlea, A. G., Gallagher, S. J., Giosan, L., Henderson, A. C. G., Holbourn, A. E., Kinsley, C. W., Lee, G. S., Lee, K. E., Lofi, J., Lopes, C. I. C. D., Saavedra-Pellitero, M., Peterson, L. C., Singh, R. K., Toucanne, S., Wan, S., Zheng, H., and Ziegler, M.. 2018. High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346. Progress in Earth and Planetary Science 5:19.Google Scholar
Talley, L. D., Min, D. H., Lobanov, V. B., Luchin, V. A., Ponomarev, V. I., Salyuk, A. N., Shcherbina, A. Y., Tishchenko, P. Y., and Zhabin, I.. 2006. Japan/East Sea water masses and their relation to the sea's circulation. Oceanography 19(3):3249.Google Scholar
Watanabe, S., Tada, R., Ikehara, K., Fujine, K., and Kido., Y. 2007. Sediment fabrics, oxygenation history, and circulation modes of Japan Sea during the Late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 247:5064.Google Scholar
Whatley, R., and Zhao, Q.. 1993. The Krithe problem: a case history of the distribution of Krithe and Parakrithe (Crustacea, Ostracoda) in the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 103:281297.Google Scholar
Wollenburg, J. E., Mackensen, A., and Kuhnt, W.. 2007. Benthic foraminiferal biodiversity response to a changing Arctic palaeoclimate in the last 24.000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 255:195222.Google Scholar
Yamada, K. 2003. New ostracod (Crustacea) species of the genus Robertsonites from the Upper Pliocene Kuwae and Sasaoka formations, central and northeast Japan. Journal of Micropalaeontology 22:169181.Google Scholar
Yamada, K., Kuroki, K., and Yamaguchi, T.. 2017. Data report: Pliocene and Pleistocene deep-sea ostracods from Integrated Ocean Drilling Program Site U1426 (Expedition 346). In Tada, R., Murray, R. W., Alvarez Zarikian, C. A., and the Expedition 346 Scientists, eds. Proceedings of the Integrated Ocean Drilling Program, 346. College Station, Tex. http://publications.iodp.org/proceedings/346/ERR/CHAPTERS/346_201.PDF, accessed 5 October 2018.Google Scholar
Yamaguchi, T., Kuroki, K., Yamada, K., Itaki, T., Niino, K., and Motoyama, I.. 2017. Pleistocene deep-sea ostracods from the Oki Ridge, Sea of Japan (IODP Site U1426) and condition of the intermediate water. Quaternary Research 88:430445.Google Scholar
Yasuhara, M., and Okahashi, H.. 2015. Late Quaternary deep-sea ostracod taxonomy of the eastern North Atlantic Ocean. Journal of Micropalaeontology 34:2149.Google Scholar
Yasuhara, M., Cronin, T. M., Demenocal, P. B., Okahashi, H., and Linsley, B. K.. 2008. Abrupt climate change and collapse of deep-sea ecosystems. Proceedings of the National Academy of Sciences USA 105:15561560.Google Scholar
Yasuhara, M., Hunt, G., Cronin, T. M., and Okahashi, H.. 2009. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences USA 106:2171721720.Google Scholar
Yasuhara, M., Okahashi, H., Cronin, T. M., Rasmussen, T. L., and Hunt, G.. 2014. Response of deep-sea biodiversity to abrupt deglacial and Holocene climate changes in the North Atlantic Ocean. Global Ecology and Biogeography 23:957967.Google Scholar
Yasuhara, M, Hunt, G., Okahashi, H., and Brandão, S. N.. 2015. Taxonomy of deep-sea trachyleberidid, thaerocytherid, and hemicytherid genera (Ostracoda). Smithsonian Contributions to Paleobiology 96:1216.Google Scholar
Zhao, Q., and Whatley, R.. 1997. Distribution of the ostracod genera Krithe and Parakrithe in bottom sediments of the East China and Yellow seas. Marine Micropaleontology 32:195207.Google Scholar