Skip to main content Accessibility help
×
Home

Current and future strategies for the nutritional management of cardiometabolic complications of androgen deprivation therapy for prostate cancer

  • Lauren Turner (a1), Karen Poole (a1), Sara Faithfull (a1) and Bruce A. Griffin (a1)

Abstract

Androgen deprivation therapy (ADT) is used widely as part of a combined modality for the treatment of prostate cancer. However, ADT has also been associated with the development of cardiometabolic complications that can increase mortality from cardiovascular events. There is emerging evidence to suggest that ADT-related cardiometabolic risk can be mitigated by diet and lifestyle modification. While the clinical focus for a nutritional approach for achieving this effect is unclear, it may depend upon the timely assessment and targeting of dietary changes to the specific risk phenotype of the patient. The present review aims to address the metabolic origins of ADT-related cardiometabolic risk, existing evidence for the effects of dietary intervention in modifying this risk, and the priorities for future dietary strategies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Current and future strategies for the nutritional management of cardiometabolic complications of androgen deprivation therapy for prostate cancer
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Current and future strategies for the nutritional management of cardiometabolic complications of androgen deprivation therapy for prostate cancer
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Current and future strategies for the nutritional management of cardiometabolic complications of androgen deprivation therapy for prostate cancer
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Professor Bruce A. Griffin, email b.griffin@surrey.ac.uk

References

Hide All
1. Prostate Cancer UK (2016) About prostate cancer. http://www.cancerresearchuk.org/about-cancer/prostate-cancer (accessed July 2016).
2. Cancer Research UK (2016) Survival statistics for prostate cancer. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer/survival (accessed July 2016)
3. Davis, MK, Rajala, JL, Tyldesley, S, et al. (2015) The prevalence of cardiac risk factors in men with localized prostate cancer undergoing androgen deprivation therapy in British Columbia, Canada. J Oncol 2015, 820403.
4. O’Farrell, S, Garmo, H, Holmberg, L, et al. (2015) Risk and timing of cardiovascular disease after androgen-deprivation therapy in men with prostate cancer. J Clin Oncol 33, 12431251.
5. Morote, J, Gómez-Caamaño, A, Alvarez-Ossorio, JL, et al. (2015) The metabolic syndrome and its components in patients with prostate cancer on androgen deprivation therapy. J Urol 193, 19631969.
6. Jespersen, CG, Nørgaard, M & Borre, M (2014) Androgen-deprivation therapy in treatment of prostate cancer and risk of myocardial infarction and stroke: a nationwide Danish population-based cohort study. Eur Urol 65, 704709.
7. Teoh, JY, Chan, SY, Chiu, PK, et al. (2015) Risk of acute myocardial infarction after androgen-deprivation therapy for prostate cancer in a Chinese population. BJU Int 116, 382387.
8. Gandaglia, G, Sun, M, Popa, I, et al. (2015) Cardiovascular mortality in patients with metastatic prostate cancer exposed to androgen deprivation therapy: a population-based study. Clin Genitourin Cancer 13, e123e130.
9. Levine, GN, D’Amico, AV, Berger, P, et al. (2010) Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. Circulation 121, 833840.
10. Keating, NL, O’Malley, AJ & Smith, MR (2006) Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol 24, 44484456.
11. Tsai, HK, D’Amico, AV, Sadetsky, N, et al. (2007) Androgen deprivation therapy for localized prostate cancer and the risk of cardiovascular mortality. J Natl Cancer Inst 99, 15161524.
12. Bosco, C, Bosnyak, Z, Malmberg, A, et al. (2015) Quantifying observational evidence for risk of fatal and nonfatal cardiovascular disease following androgen deprivation therapy for prostate cancer: a meta-analysis. Eur Urol 68, 386396.
13. Smith, JC, Bennett, S, Evans, LM, et al. (2001) The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer. J Clin Endocrinol Metab 86, 42614267.
14. Gilbert, SE, Tew, GA, Bourke, L, et al. (2013) Assessment of endothelial dysfunction by flow-mediated dilatation in men on long-term androgen deprivation therapy for prostate cancer. Exp Physiol 98, 14011410.
15. Oka, R, Utsumi, T, Endo, T, et al. (2016) Effect of androgen deprivation therapy on arterial stiffness and serum lipid profile changes in patients with prostate cancer: a prospective study of initial 6-month follow-up. Int J Clin Oncol 21, 389396.
16. Knutsson, A, Hsiung, S, Celik, S, et al. (2016) Treatment with a GnRH receptor agonist, but not the GnRH receptor antagonist degarelix, induces atherosclerotic plaque instability in ApoE-/- mice. Sci Rep 6, 26220.
17. Roach, M, Bae, K, Speight, J, et al. (2008) Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of RTOG 8610. J Clin Oncol 26, 585591.
18. Alibhai, SM, Duong-Hua, M, Sutradhar, R, et al. (2009) Impact of androgen deprivation therapy on cardiovascular disease and diabetes. J Clin Oncol 27, 34523458.
19. Nguyen, PL, Je, Y, Schutz, FA, et al. (2011) Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: a meta-analysis of randomized trials. JAMA 306, 23592366.
20. Nguyen, PL, Chen, MH, Beckman, JA, et al. (2012) Influence of androgen deprivation therapy on all-cause mortality in men with high-risk prostate cancer and a history of congestive heart failure or myocardial infarction. Int J Radiat Oncol Biol Phys 82, 14111416.
21. Voog, JC, Paulus, R, Shipley, WU, et al. (2016) Cardiovascular mortality following short-term androgen deprivation in clinically localized prostate cancer: an analysis of RTOG 94-08. Eur Urol 69, 204210.
22. Albertsen, PC, Klotz, L, Tombal, B, et al. (2014) Cardiovascular morbidity associated with gonadotropin releasing hormone agonists and an antagonist. Eur Urol 65, 565573.
23. Ziehr, DR, Chen, MH, Zhang, D, et al. (2015) Association of androgen-deprivation therapy with excess cardiac-specific mortality in men with prostate cancer. BJU Int 116, 358365.
24. Monzó-Gardiner, JI & Herranz-Amo, F (2015) Cardiovascular mortality in patients with prostate cancer exposed to androgen deprivation therapy. Actas Urol Esp 39, 518522.
25. Gandaglia, G, Sun, M, Popa, I, et al. (2014) The impact of androgen-deprivation therapy (ADT) on the risk of cardiovascular (CV) events in patients with non-metastatic prostate cancer: a population-based study. BJU Int 114, E82E89.
26. Rutter, MK, Meigs, JB, Sullivan, LM, et al. (2005) Insulin resistance, the metabolic syndrome, and incident cardiovascular events in the Framingham Offspring Study. Diabetes 54, 32523257.
27. Lohmann, AE, Goodwin, PJ, Chlebowski, RT, et al. (2016) Association of obesity-related metabolic disruptions with cancer risk and outcomes. J Clin Oncol 34, 42494255.
28. Hopkins, BD, Gonclaves, MD & Cantley, LC (2016) Obesity and cancer mechanisms:cancer metabolism. J Clin Oncol 34, 42774283.
29. de Haas, EC, Oosting, SF, Lefrandt, JD, et al. (2010) The metabolic syndrome in cancer survivors. Lancet Oncol 11, 193203.
30. Kahn, R (2008) Metabolic syndrome – what is the clinical usefulness? Lancet 371, 18921893.
31. Jackson, KG, Walden, CM, Murray, P, et al. (2012) A sequential two meal challenge reveals abnormalities in postprandial TAG but not glucose in men with increasing numbers of metabolic syndrome components. Atherosclerosis 220, 237243.
32. Wahi, G & Anand, SS (2013) Race/ethnicity, obesity, and related cardio-metabolic risk factors: a life-course perspective. Curr Cardiovasc Risk Rep 7, 326335.
33. Ouchi, N, Parker, JL, Lugus, JJ, et al. (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11, 8597.
34. Sattar, N & Gill, JM (2014) Type 2 diabetes as a disease of ectopic fat? BMC Med 12, 123.
35. Nguyen, PL, Jarolim, P, Basaria, S, et al. (2015) Androgen deprivation therapy reversibly increases endothelium-dependent vasodilation in men with prostate cancer. J Am Heart Assoc 4, e001914.
36. Grossmann, M & Wittert, G (2012) Androgens, diabetes and prostate cancer. Endocr Relat Cancer 19, F47F62.
37. Smith, MR, Saad, F, Egerdie, B, et al. (2012) Sarcopenia during androgen-deprivation therapy for prostate cancer. J Clin Oncol 30, 32713276.
38. Saylor, PJ & Smith, MR (2009) Metabolic complications of androgen deprivation therapy for prostate cancer. J Urol 189, S34S42; discussion S43–S44.
39. Efstathiou, JA, Bae, K, Shipley, WU, et al. (2009) Cardiovascular mortality after androgen deprivation therapy for locally advanced prostate cancer: RTOG 85-31. J Clin Oncol 27, 9299.
40. Punnen, S, Cooperberg, MR, Sadetsky, N, et al. (2011) Androgen deprivation therapy and cardiovascular risk. J Clin Oncol 29, 35103516.
41. Wall, BA, Galvão, DA, Fatehee, N, et al. (2015) Reduced cardiovascular capacity and resting metabolic rate in men with prostate cancer undergoing androgen deprivation: a comprehensive cross-sectional investigation. Adv Urol 2015, 976235.
42. Srikanthan, P, Hevener, AL & Karlamangla, AS (2010) Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS ONE 5, e10805.
43. Lee, J, Hong, YP, Shin, HJ, et al. (2016) Associations of sarcopenia and sarcopenic obesity with metabolic syndrome considering both muscle mass and muscle strength. J Prev Med Public Health 49, 3544.
44. Cheung, AS, Zajac, JD & Grossmann, M (2014) Muscle and bone effects of androgen deprivation therapy: current and emerging therapies. Endocr Relat Cancer 21, R371R394.
45. Ma, J, Hwang, SJ, McMahon, GM, et al. (2016) Mid-adulthood cardiometabolic risk factor profiles of sarcopenic obesity. Obesity (Silver Spring) 24, 526534.
46. Loomba, R & Sanyal, AJ (2013) The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10, 686690.
47. Kotronen, A & Yki-Järvinen, H (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 28, 2738.
48. Preiss, D & Sattar, N (2007) Metabolic syndrome, dysglycaemia and vascular disease: making sense of the evidence. Heart 93, 14931496.
49. Kelishadi, R, Cook, SR, Adibi, A, et al. (2009) Association of the components of the metabolic syndrome with non-alcoholic fatty liver disease among normal-weight, overweight and obese children and adolescents. Diabetol Metab Syndr 1, 29.
50. Conti, CR (2002) Evolution of NCEP guidelines: ATP1-ATPIII risk estimation for coronary heart disease in 2002. National Cholesterol Education Program. Clin Cardiol 25, 8990.
51. Jenkins, DJ, Kendall, CW, Faulkner, DA, et al. (2006) Assessment of the longer-term effects of a dietary portfolio of cholesterol-lowering foods in hypercholesterolemia. Am J Clin Nutr 83, 582591.
52. Jenkins, DJ, Jones, PJ, Lamarche, B, et al. (2011) Effect of a dietary portfolio of cholesterol-lowering foods given at 2 levels of intensity of dietary advice on serum lipids in hyperlipidemia: a randomized controlled trial. JAMA 306, 831839.
53. Muzio, F, Mondazzi, L, Harris, WS, et al. (2007) Effects of moderate variations in the macronutrient content of the diet on cardiovascular disease risk factors in obese patients with the metabolic syndrome. Am J Clin Nutr 86, 946951.
54. Laddu, D, Dow, C, Hingle, M, et al. (2011) A review of evidence-based strategies to treat obesity in adults. Nutr Clin Pract 26, 512525.
55. Appel, LJ, Brands, MW, Daniels, SR, et al. (2006) Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 47, 296308.
56. Arab, L, Su, J, Steck, SE, et al. (2013) Adherence to World Cancer Research Fund/American Institute for Cancer Research lifestyle recommendations reduces prostate cancer aggressiveness among African and Caucasian Americans. Nutr Cancer 65, 633643.
57. NICE (2016) Obesity: identification, assessment and management: 1.7 Dietary. https://www.nice.org.uk/guidance/cg189 (accessed July 2016).
58. Garaulet, M, Gómez-Abellán, P, Alburquerque-Béjar, JJ, et al. (2013) Timing of food intake predicts weight loss effectiveness. Int J Obes (Lond) 37, 604611.
59. Knutson, KL (2012) Does inadequate sleep play a role in vulnerability to obesity? Am J Hum Biol 24, 361371.
60. Harrington, DM, Martin, CK, Ravussin, E, et al. (2013) Activity related energy expenditure, appetite and energy intake: potential implications for weight management. Appetite 67, 17.
61. Abete, I, Astrup, A, Martínez, JA, et al. (2010) Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutr Rev 68, 214231.
62. Mattson, MP, Allison, DB, Fontana, L, et al. (2014) Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A 111, 1664716653.
63. Varady, KA (2011) Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obes Rev 12, e593e601.
64. Harvie, MN, Pegington, M, Mattson, MP, et al. (2011) The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes (Lond) 35, 714727.
65. Klempel, MC, Kroeger, CM, Bhutani, S, et al. (2012) Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr J 11, 98.
66. Smith, U (2015) Abdominal obesity: a marker of ectopic fat accumulation. J Clin Invest 125, 17901792.
67. Rosqvist, F, Iggman, D, Kullberg, J, et al. (2014) Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 63, 23562368.
68. Jebb, SA, Lovegrove, JA, Griffin, BA, et al. (2010) Effect of changing the amount and type of fat and carbohydrate on insulin sensitivity and cardiovascular risk: the RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) trial. Am J Clin Nutr 92, 748758.
69. Jump, DB, Depner, CM & Tripathy, S (2012) Omega-3 fatty acid supplementation and cardiovascular disease. J Lipid Res 53, 25252545.
70. Araya, J, Rodrigo, R, Videla, LA, et al. (2004) Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin Sci (Lond) 106, 635643.
71. Scorletti, E, Bhatia, L, McCormick, KG, et al. (2014) Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the WELCOME* study. Hepatology 60, 12111221.
72. Cocate, PG, Pereira, LG, Marins, JC, et al. (2011) Metabolic responses to high glycemic index and low glycemic index meals: a controlled crossover clinical trial. Nutr J 10, 1.
73. Te Morenga, L, Mallard, S & Mann, J (2012) Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 346, e7492.
74. Anderson, JJ, Celis-Morales, CA, Mackay, DF, et al. (2016) Adiposity among 132 479 UK Biobank participants; contribution of sugar intake vs other macronutrients. Int J Epidemiol (epublication ahead of print version 12 July 2016).
75. Stanhope, KL, Schwarz, JM, Keim, NL, et al. (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119, 13221334.
76. Scientific Advisory Committee on Nutrition (SACN) (2015) Carbohydrates and Health. London: TSO (The Stationery Office).
77. Yang, Q, Zhang, Z, Gregg, EW, et al. (2014) Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern Med 174, 516524.
78. Riccioni, G, Sblendorio, V, Gemello, E, et al. (2012) Dietary fibers and cardiometabolic diseases. Int J Mol Sci 13, 15241540.
79. Nowson, C & O’Connell, S (2015) Protein requirements and recommendations for older people: a review. Nutrients 7, 68746899.
80. Mamerow, MM, Mettler, JA, English, KL, et al. (2014) Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J Nutr 144, 876880.
81. Moore, TJ, Conlin, PR, Ard, J, et al. (2001) DASH (Dietary Approaches to Stop Hypertension) diet is effective treatment for stage 1 isolated systolic hypertension. Hypertension 38, 155158.
82. Blumenthal, JA, Babyak, MA, Hinderliter, A, et al. (2010) Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch Intern Med 170, 126135.
83. Estruch, R, Ros, E, Salas-Salvadó, J, et al. (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368, 12791290.
84. Kromhout, D, Spaaij, CJ, de Goede, J, et al. (2016) The 2015 Dutch food-based dietary guidelines. Eur J Clin Nutr 70, 869878.
85. Fan, J, Song, Y, Chen, Y, et al. (2013) Combined effect of obesity and cardio-metabolic abnormality on the risk of cardiovascular disease: a meta-analysis of prospective cohort studies. Int J Cardiol 168, 47614768.
86. Basaria, S & Bhasin, S (2012) Targeting the skeletal muscle–metabolism axis in prostate-cancer therapy. N Engl J Med 367, 965967.
87. Dixon, JB, Lambert, EA, Grima, M, et al. (2015) Fat-free mass loss generated with weight loss in overweight and obese adults: what may we expect? Diabetes Obes Metab 17, 9193.
88. Backx, EM, Tieland, M, Borgonjen-van den Berg, KJ, et al. (2016) Protein intake and lean body mass preservation during energy intake restriction in overweight older adults. Int J Obes (Lond) 40, 299304.
89. Frestedt, JL, Zenk, JL, Kuskowski, MA, et al. (2008) A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study. Nutr Metab (Lond) 5, 8.
90. Hector, AJ, Marcotte, GR, Churchward-Venne, TA, et al. (2015) Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults. J Nutr 145, 246252.
91. Verreijen, AM, Verlaan, S, Engberink, MF, et al. (2015) A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am J Clin Nutr 101, 279286.
92. Robinson, S, Cooper, C & Aihie Sayer, A (2012) Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. J Aging Res 2012, 510801.
93. Michie, S, Ashford, S, Sniehotta, FF, et al. (2011) A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: the CALO-RE taxonomy. Psychol Health 26, 14791498.
94. Nobes, JP, Langley, SE, Klopper, T, et al. (2012) A prospective, randomized pilot study evaluating the effects of metformin and lifestyle intervention on patients with prostate cancer receiving androgen deprivation therapy. BJU Int 109, 14951502.
95. Bourke, L, Gilbert, S, Hooper, R, et al. (2014) Lifestyle changes for improving disease-specific quality of life in sedentary men on long-term androgen-deprivation therapy for advanced prostate cancer: a randomised controlled trial. Eur Urol 65, 865872.
96. D’Amico, AV, Chen, MH, Renshaw, AA, et al. (2008) Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA 299, 289295.
97. Messing, EM, Manola, J, Yao, J, et al. (2006) Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol 7, 472479.
98. Bolla, M, Van Tienhoven, G, Warde, P, et al. (2010) External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol 11, 10661073.
99. Schröder, FH, Kurth, K-H, Fossa, SD, et al. (2009) Early versus delayed endocrine treatment of T2-T3 pN1-3 M0 prostate cancer without local treatment of the primary tumour: final results of European Organisation for the Research and Treatment of Cancer protocol 30846 after 13 years of follow-up (a randomised controlled trial). Eur Urol 55, 1422.
100. Studer, UE, Whelan, P, Albrecht, W, et al. (2006) Immediate or deferred androgen deprivation for patients with prostate cancer not suitable for local treatment with curative intent: European Organisation for Research and Treatment of Cancer (EORTC) trial 30891. J Clin Oncol 24, 18681876.
101. Denham, JW, Steigler, A, Lamb, DS, et al. (2011) Short term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol 12, 451459.
102. Azoulay, L, Yin, H, Benayoun, S, et al. (2011) Androgen-deprivation therapy and the risk of stroke in patients with prostate cancer. Eur Urol 60, 12441250.
103. Hu, JC, Williams, SB, O’Malley, AJ, et al. (2012) Androgen-deprivation therapy for nonmetastatic prostate cancer is associated with an increased risk of peripheral arterial disease and venous thromboembolism. Eur Urol 61, 11191128.
104. Keating, NL, O’Malley, AJ, Freedland, SJ, et al. (2010) Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst 102, 3946.
105. Martín-Merino, E, Johansson, S, Morris, T, et al. (2011) Androgen deprivation therapy and the risk of coronary heart disease and heart failure in patients with prostate cancer: a nested case–control study in UK primary care. Drug Saf 34, 10611077.
106. Van Hemelrijck, M, Adolfsson, J, Garmo, H, et al. (2010) Risk of thromboembolic diseases in men with prostate cancer: results from the population-based PCBaSe Sweden. Lancet Oncol 11, 450458.
107. Van Hemelrijck, M, Garmo, H, Holmberg, L, et al. (2010) Absolute and relative risk of cardiovascular disease in men with prostate cancer: results from the population-based PCBaSe Sweden. J Clin Oncol 28, 34483456.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed