Skip to main content Accessibility help

Siegel modular forms and theta series attached to quaternion algebras

Published online by Cambridge University Press:  22 January 2016

Siegfried Böcherer
Mathematisches Institut, der Universitat Freiburg, Hebelst. 29 D-7800, Freiburg
Rainer Schulze-Pillot
Fakultät für Mathematik, SFB 343, Universität Bielefeld, Postfach 8640, D-4800, Bielefeld
Rights & Permissions[Opens in a new window]


The two main problems in the theory of the theta correspondence or lifting (between automorphic forms on some adelic orthogonal group and on some adelic symplectic or metaplectic group) are the characterization of kernel and image of this correspondence. Both problems tend to be particularly difficult if the two groups are approximately the same size.

Research Article
Copyright © Editorial Board of Nagoya Mathematical Journal 1991


[An 1] Andrianov, A. N., Quadratic forms and Hecke operators, Grundlehren d. math. Wiss. 286, Berlin-Heidelberg-New York 1987.CrossRefGoogle Scholar
[An 2] Andrianov, A. N., Degenerations of rings of Hecke operators on spaces of theta series, Proc. of the Steklov Institute of Math., 1983, no. 3, 117.Google Scholar
[An 3] Andrianov, A. N., Duality in Siegel’s theorem on representations by a genus of quadratic forms and the averaging operator, Math. USSR Sbornik, 50 (1985), 110.CrossRefGoogle Scholar
[Bö 1] Böcherer, S., Über die Punktionalgleichung automorpher L-Punktionen zur Siegelschen Modulgruppe, J. f. d. reine und angew. Math., 362 (1985), 146168.Google Scholar
[Bö 2] Böcherer, S., Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe, Abh. Math. Sem. Univ. Hamburg, 56 (1986), 3547.CrossRefGoogle Scholar
[Bö 3] Böcherer, S., Siegel modular forms and theta series in: Proceedings of the AMS Summer Research Institute “Theta Functions”, Bowdoin College 1987, Providence 1989.Google Scholar
[BöRa] Böcherer, S. and Raghavan, S., On Fourier coefficients of Siegel modular forms, J. f. d. reine und angew. Math., 384 (1988), 80101.Google Scholar
[Ca 1] Casselmann, W., On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301314.CrossRefGoogle Scholar
[Ca 2] Casselmann, W., An assortment of results on representations of GL 2(k), p. 1–54 in Modular functions of one variable II, Lecture Notes Math., 349, Berlin-Heidelberg-New York 1973.Google Scholar
[E 1] Eichler, M., Quadratische Formen und orthogonale Gruppen, Berlin-Göttingen-Heidelberg, 1952.CrossRefGoogle Scholar
[E 2] Eichler, M., Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion, Arch. Math., 5 (1954), 355366.CrossRefGoogle Scholar
[E 3] Eichler, M., Zur Zahlentheorie der Quaternionen-Algebren, J. f. d. reine und angew. Math., 195 (1956), 127151.Google Scholar
[E 4] Eichler, M., The basis problem for modular forms and the traces of the Hecke operators, p. 76–151 in Modular functions of one variable I, Lecture Notes Math., 320, Berlin-Heidelberg-New York 1973.Google Scholar
[Ev] Evdokimov, S. A., Action of the irregular Hecke operator of index p on the theta series of a quadratic form, J. Sov. Math., 38 (1987), 20782081.CrossRefGoogle Scholar
[Fe] Feit, P., Poles and residues of Eisenstein series for symplectic and unitary groups, Mem. AMS, 61 (1986), no. 346.Google Scholar
[Fre 1] Freitag, E., Siegelsche Modulfunktionen, Berlin-Heidelberg-New York, 1983.CrossRefGoogle Scholar
[Fre 2] Freitag, E., Die Invarianz gewisser von Thetareihen erzeugter Vektorraume unter Heckeoperatoren, Math. Zeitschrift, 156 (1977), 141155.CrossRefGoogle Scholar
[Ga] Garrett, P., Decomposition of Eisenstein series: Applications, in: Automorphic forms in several variables (Taniguchi symposium), Boston 1984.Google Scholar
[Ge] Gelbart, S., Automorphic forms on adele groups, Princeton 1975.Google Scholar
[G R] Goldman, J. and Rota, G.-C., On the foundations of combinatorial theory IV, Studies in applied math., 49 (1970), 239258.CrossRefGoogle Scholar
[Gr] Gross, B., Heights and the special values of L-series, p. 115–187 in: Number Theory (Montreal 1985), CMS Conf. Proc. 7, Providence 1987.Google Scholar
[Ha 1] Harris, M., The rationality of holomorphic Eisenstein series, Invent, math., 63 (1981), 305310.CrossRefGoogle Scholar
[Ha 2] Harris, M., Eisenstein series on Shimura varieties, Ann. of math., 119 (1984), 5994.CrossRefGoogle Scholar
[Hi Sa] Hijikata, H. and Saito, H., On the representability of modular forms by theta series, p. 13–21 in: Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Tokyo 1973.Google Scholar
[H-PS] Howe, R. and Piatetski-Shapiro, I. I., Some examples of automorphic forms on Sp4 Duke Math. J., 50 (1983), 55106.CrossRefGoogle Scholar
[Ki 1] Kitaoka, Y., Siegel modular forms and representation by quadratic forms, Bombay 1986.CrossRefGoogle Scholar
[Ki 2] Kitaoka, Y., Representations of quadratic forms and their applications to Selberg’s zeta function, Nagoya Math. J., 63 (1976), 153162.CrossRefGoogle Scholar
[Ki 3] Kitaoka, Y., A remark on the transformation formula of theta functions associated to positive definite quadratic forms, J. Number Th., 12 (1980), 224229.CrossRefGoogle Scholar
[Ki 4] Kitaoka, Y., Dirichlet series in the theory of Siegel modular forms, Nagoya Math. J., 95 (1984), 7384.CrossRefGoogle Scholar
[Kli] Klingen, H., Zum Darstellungssatz für Siegelsche Modulformen, Math. Z., 102 (1967), 3043.CrossRefGoogle Scholar
[Kn] Kneser, M., Witts Satz für quadratische Formen über lokalen Ringen, Nachr. d. Akad. d. Wiss. Göttingen 1972, 195204.Google Scholar
[Kra] Kramer, J., Jacobiformen und Thetareihen, Manuscripta math., 54 (1986), 279322.Google Scholar
[Kri] Krieg, A., Das Vertauschungsgesetz zwischen Hecke-Operatoren und dem Siegelschen φ-Operator, Arch. Math., 46 (1986), 323329.CrossRefGoogle Scholar
[Ku] Kudla, S., On the local theta correspondence, Invent, math., 83 (1986), 229255.CrossRefGoogle Scholar
[KuRa] Kudla, S. and Rallis, S., On the Weil-Siegel formula, J. f. d. reine u. angew. Math., 837 (1988), 168.Google Scholar
[Li] Li, W., Newforms and functional equations, Math. Ann. 212 (1975), 285315.CrossRefGoogle Scholar
[Ma] Maaß, H., Siegel’s modular forms and Dirichlet series, Lect. Notes Math., 216, Berlin-Heidelberg-New York 1971.Google Scholar
[O] Ogg, A., On a convolution of L-series, Invent, math., 7 (1969), 279312.CrossRefGoogle Scholar
[OM] O’Meara, O. T., Introduction to quadratic forms, Grundlehren d. math. Wiss., 117, Berlin-Heidelberg-New York 1973.Google Scholar
[Pe] Perrin, P., Representation de Schrödinger, indice de Maslov et groupe meta-plectique, p. 370–407 in: Lect. Notes Math., 880, Berlin-Heidelberg-New York 1981.Google Scholar
[Pet] Petersson, H., Über die Berechnung der Skalarprodukte ganzer Modulformen, Comm. math. Helv., 22 (1949), 168191.CrossRefGoogle Scholar
[Pf] Pfeuffer, H., Einklassige Geschlechter totalpositiver quadratischer Formen in total-reellen algebraischen Zahlkörpern, J. Number Th., 3 (1971), 371411.CrossRefGoogle Scholar
[Pi] Pizer, A., Type numbers of Eichler orders, J. f. d. reine u. angew. Math., 264 (1973), 76102.Google Scholar
[Ra 1] Rallis, S., L-functions and the oscillator representation, Lect. Notes Math., 1245, Berlin-Heidelberg-New York 1987.Google Scholar
[Ra 2] Rallis, S., Langlands functoriality and the Weil representation, Amer. J. of Math., 104 (1982), 469515.CrossRefGoogle Scholar
[Ra 3] Rallis, S., On the Howe duality conjecture, Comp. Math., 51 (1984), 333399.Google Scholar
[Ra 4] Rallis, S., Injectivity properties of liftings associated to Weil representations, Comp. Math., 52 (1984), 139169.Google Scholar
[Rao] Rao, R., On some explicit formulas in the theory of the Weil representation, unpublished manuscript.Google Scholar
[Ran] Rankin, R., The scalar product of modular forms, Proc. of the London Math. Soc, 3 (1952), 198217.CrossRefGoogle Scholar
[Sa] Saito, M., Representations unitaires des groupes symplectiques, J. Math. Soc. Japan, 24 (1972), 232251.CrossRefGoogle Scholar
[Shi 1] Shimura, G., Confluent hypergeometric functions on tube domains. Math. Ann., 260 (1982), 269302.CrossRefGoogle Scholar
[Shi 2] Shimura, G., On Eisenstein series of half-integral weight, Duke Math. J., 52 (1985), 281314.CrossRefGoogle Scholar
[Shz] Shimizu, , Theta series and automorphic forms on GL2 , J. of the Math. Soc. of Japan, 24 (1972), 638683.CrossRefGoogle Scholar
[SP] Schulze-Pillot, R., A linear dependence of theta series of degree and weight two, in: Proceedings of the Journées Arithmétiques Ulm 1987, Lect. Notes Math. 1380, Berlin-Heidelberg-New York 1989.Google Scholar
[Tarn] Tamagawa, T., On the ζ-functions of a division algebra, Ann. Math., 77 (1963), 387405.CrossRefGoogle Scholar
[Tan] Tanigawa, Y., Construction of Siegel modular forms of degree three and commutation relations of Hecke operators, Nagoya Math. J., 100 (1985), 8396.CrossRefGoogle Scholar
[Vi 1] Vigneras, M.-F., Arithmétique des algebres de quaternions, Lect. Notes Math., 800, Berlin-Heidelberg-New York 1980.Google Scholar
[Vi 2] Vigneras, M.-F., Correspondences entre representations automorphes de GL(2) sur une extension quadratique de GSp(4) sur Q, conjecture locale de Langlands pour GSp(4) , p. 463527 in: Contemporary Mathematics, 53 (1986).CrossRefGoogle Scholar
[Wa 1] Waldspurger, J. L., Correspondance de Shimura, J. Math, pures et appl., 59 (1980),1133.Google Scholar
[Wa 2] Waldspurger, J. L., Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math, pures et appl., 60 (1981), 375484.Google Scholar
[Wa 3] Waldspurger, J. L., Correspondance de Shimura et quaternions, unpublished manuscript,Google Scholar
[War] Warner, G., Harmonic analysis on semi-simple Lie groups I, Grundlehren d. math. Wiss. 188, Berlin-Heidelberg-New York 1972.Google Scholar
[We] Weissauer, R., Stabile Modulformen und Eisensteinreihen, Lect. Notes Math., 1219, Berlin-Heidelberg-New York 1986.Google Scholar
[Y 1] Yoshida, H., Siegel’s modular forms and the arithmetic of quadratic forms, Invent. math., 60 (1980), 193248.CrossRefGoogle Scholar
[Y 2] Yoshida, H., On Siegel modular forms obtained from theta series, J. f. d. reine u. angew. Math., 352 (1984), 184219.Google Scholar
[Y 3] Yoshida, H., The action of Hecke operators on theta series, p. 197238 in: Algebraic and topological theories—to the memory of Dr. T. Miyake—, 1985.Google Scholar
[Zh] Zharkovskaya, N. A., The Siegel operator and Hecke operators, Functional Anal. Appl., 8 (1974), 113120.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 215 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-r88h9 Total loading time: 0.355 Render date: 2021-01-24T19:21:44.742Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Siegel modular forms and theta series attached to quaternion algebras
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Siegel modular forms and theta series attached to quaternion algebras
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Siegel modular forms and theta series attached to quaternion algebras
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *