Skip to main content Accessibility help
×
Home

Self-Diffusion as A Limiting Factor of a-SiGe Crystallization

  • F. Edelman (a1), T. Raz (a1), Y. Komem (a1), P. Werner (a2), W. Beyer (a3), R. Butz (a3), H. Zeindl (a4) and P. Zaumseil (a4)...

Abstract

Highly doped (∼1018 to 1021cm−3) polycrystalline Si1-xGex films, crystallized from amorphous (a) state at relative low temperatures, are prospective materials in a variety of applications, such as liquid-crystal displays, solar cells and integrated thermoelectric sensors on large-area glass substrates. Since the nature of the grains in the crystallized film defines properties such as carrier mobility, the nucleation and growth process of the a-SiGe films is of fundamental interest. We have studied the crystallization of undoped and highly doped (B or Ga) amorphous SiGe films. The films were deposited by RFCVD or molecular beam on oxidized (001)Si and for TEM study on cleaved NaCl. The incubation time and grain growth rate were studied by means of in situ TEM using a heating stage. The crystallization process in undoped SiGe followed Avrami relationship. An average grain size between 0.1 and 2μm was observed. However, the highly p-doped (with B or Ga) SiGe films crystallized to a stable nanocrystalline structure (grain size <10nm). The process of the a-SiGe crystallization is explained on the basis of self-diffusion. During the first stage, the nucleation of crystals is accompanied with nonequilibrium vacancy generation at the amorphous/crystalline interface. During the second stage, the growth of crystals takes place by vacancy outdiffusion which is hindered by B and Ga interaction with vacancies.

Copyright

References

Hide All
1. King, T.-J. and Saraswat, K.C., IEEE Trans. on Electron Devices, 41, p. 1581 (1994).
2. Sameshima, T. and Usui, S., Mat. Res. Soc. Symp. 258, p. 117 (1992).
3. Tsuo, Y.S., Xu, Y., Ramsay, E.A., Crandall, R.S., Salamon, S.T., Balberg, I., Nelson, B.P., Xiao, Y., and Chen, Y., Mat. Res. Soc. Symp. Proc. (Materials Research Society, Pittsburgh, 1991) 219, p. 769.
4. Van Gerwen, P., Slater, T., Chevrier, J.B., Baert, K., and Mertens, R., Sensors, a. Actuators, A53, p. 325 (1996).
5. Christian, J.W., The Theory of Transformation in Metals and Allovs Pergamon Press, Oxford, 1975.
6. Spaepen, F., Acta Metallurgica, 26, 1, 167 (1978);
Spaepen, F. and Ternbull, D. in Laser-Solid Interactions and Laser Processing, edited by Ferris, S., Leamy, H.J., and Poate, J.M., N.Y., 1978, p. 7380.
7. Pantelides, S., Mat. Res. Soc. Symp. Proc. 100, p. 387 (1988).
8. Csepregi, L., Kennedy, E.F., Callagher, T.J., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 48, 4, 234 (1977);
Bourgoin, J.C. and Asomosa, R., J. Cryst. Growth, 69, p. 489 (1984).
9. Narayan, J., J. Appl. Phys. 53, 8, 607 (1982);
Germain, P.J., Paesler, M.A., Sayers, D.E., and Zeliama, K., Mater. Res. Soc. Symp. Proc. 13, p. 135 (1983).
10. Olson, G.L. and Roth, J.A., Mater. Sci. Repts. 3, p.1 (1988).
11. Edelman, F., Weil, R., Werner, P., Reiche, M., and Beyer, W., phys. stat. sol, (a)150, p. 407 (1995).
12. Edelman, F., Weil, R., Werner, P., Reiche, M., Schroer, E., Heydenreich, J. and Beyer, W., Solid State Phenomena, 51/52, p. 283 (1996).
13. Edelman, F., Komem, Y., Stölzer, M., Werner, P., and Butz, R. in Semiconducting and Insulating Materials, edited by Fontane, C. (IEEE, Operations Center, Piscataway, NJ, 1996) p. 205210.
14. Edelman, F., Raz, T., Komem, Y., Werner, P., Stölzer, M., Beyer, W., Butz, R., Zeindl, H. and Zaumseil, P., will be published.
15. Haynes, T.E., Antonell, M.J., Lee, C.A., and Jones, K.S., Phys. Rev. B51, p. 7, 762 (1995);
Kringhoj, P. and Elliman, , Phys. Rev Lett. 73, p. 858 (1994).
16. Suh, K.Y. and Lee, H.H., J. Appl. Phys. 80, p. 6, 716 (1996).
17. Maroudas, D. and Pantelides, S.T., Chem. Engng. Sei. 49, p. 3, 001 (1994).
18. Frank, W., Gösele, U., Mehrer, H., and Seeger, A. in Diffusion in Crystalline Solids, edited by Murch, G.E. and Nowick, A. (Academic Press, 1984) p. 63142.
19. Carlsson, J.R.A., Gong, S.F., Li, X.-H., and Hentzell, H.T.G., J. Appl. Phys. 70, p. 4, 857 (1991);
Carlsson, J.R.A., Li, X.-H., Gong, S.F., and Hentzell, H.T.G., J. Appl. Phys. 74, p. 891 (1993).
20. Damson, B. and Wiirschum, R., J. Appl. Phys. 80, p. 747 (1996);
Battezzati, L. and Baricco, M., Pnil. Mag. B68, p. 813 (1993);
Kronmüller, H., Frank, W. and Hörner, A., Mater. Sci. Engng. A133, p. 410 (1991).
21. Mayburg, S. and Rotondi, L., Phys. Rev. 91, p. 1,015 (1953);
Schwoebel, R.L., J. Appl. Phys. 38, p. 3,154 (1967).

Self-Diffusion as A Limiting Factor of a-SiGe Crystallization

  • F. Edelman (a1), T. Raz (a1), Y. Komem (a1), P. Werner (a2), W. Beyer (a3), R. Butz (a3), H. Zeindl (a4) and P. Zaumseil (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed