Skip to main content Accessibility help
×
Home

Role of Arsenic Hexagonal Growth-Suppression on a Cubic GaNAs Growth Using Metalorganic Chemical Vapor Deposition

  • S. Yoshida (a1), T. Kimura (a2), J. Wu (a2), J. Kikawa (a1), K. Onabe (a2) and Y. Shiraki (a3)...

Abstract

The hexagonal domain suppression-effects in cubic-GaNAs grown by metalorganic chemical-vapor deposition (MOCVD) is reported. A thin buffer layer (20 nm) was first grown on a substrate at 853 K using trimethylgallium and dimethylhydrazine (DMHy), and GaNAs samples were grown at different AsH3 flow rates (0 ∼ 450 µmol/min) at 1193 K. As a result, three types of surface morphologies were obtained: the first was a smooth surface (AsH3 = 0 µmol/min); the second was a mirrorlike surface having small and isotropic grains (AsH3 : 45 ∼ 225 µmol/min ); and the third involved threedimensional surface morphologies (above 450 µmol/min of AsH3 flow rate). Furthermore, it was confirmed using X-ray diffraction that the mixing ratio of hexagonal GaNAs in cubic GaNAs decreased with an increase of the AsH3 flow rate. We could obtain GaNAs having a cubic component of above 85% at AsH3 flow rates above 20 µmol/min. Therefore, the MOCVD growth method using AsH3 and DMHy was mostly effective for suppressing hexagonal GaNAs. It was observed that the photoluminescence intensity of GaNAs was decreased with increase of arsine flow rate.

Copyright

References

Hide All
1. Bellaiche, L., Wei, S. - H. and Zunger, A., Appl. Phys. 70, 3558 (1997).
2. Wei, S. - H. and Zunger, A., Phys. Rev. 76, 664 (1996).
3. Stringfellow, G. B., J. Electrochem. Soc. 119, 1780 (1972).
4. Stringfellow, G. B., J. Cryst. Growth. 27, 21 (1974).
5. Iwata, K., Asahi, H., Asami, K., Kuroiwa, R. and Gonda, S., Jpn. Appl. 37, 1436 (1998).
6. Iwata, K., Asahi, H., Asami, K. and Gonda, S., Jpn. Appl. Phys. 35, L1634 (1996).
7. Tampo, H., Asahi, H., Iwata, K., Hiroki, M., Asami, K. and Gonda, S., Technical Report of Jpn. IEICE. 98, ED98 (1998).
8. Wu, J., Kudo, M., Nagayama, A., Yaguchi, H., Onabe, K. and Shiraki, Y., to be published in Phys. Stat. Sol. (b).
9. Cheng, T. S., Jenkins, L. C., Hooper, S. E., Foxon, C. T., Orton, J. W. and Lacklison, D. E., Appl. Phys. Lett. 66, 1509 (1995).
10. Tsutchiya, H., Sunaba, K., Yonemura, S., Suemasu, T., and Hasegawa, F., Jpn. J. Appl. Phys. 36, L1 (1997).

Role of Arsenic Hexagonal Growth-Suppression on a Cubic GaNAs Growth Using Metalorganic Chemical Vapor Deposition

  • S. Yoshida (a1), T. Kimura (a2), J. Wu (a2), J. Kikawa (a1), K. Onabe (a2) and Y. Shiraki (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed