Skip to main content Accessibility help

Electronic structure of Cd, In, Sn substitutional Defects in GaSe

  • Zsolt Rak (a1), Subhendra D Mahanti (a2), Krishna C Mandal (a3) and Nils C Fernelius (a4)


Ab initio electronic structure calculations within density functional theory have been carried out in pure GaSe and GaSe doped with substitutional impurities (Cd, In and Sn) at the Ga site in order to understand the nature of the defect states and how they depend on the nominal valence of these three impurities. We find that Cd impurity introduces a defect state located between 0.1 – 0.18 eV above the valence band, in good agreement with photoluminescence peaks seen at 0.13 eV and 0.18 eV. Using both experimental and theoretical effective mass parameters we show that effective mass model fails to describe these acceptor states. Sn changes the single particle density of states (DOS) near the bottom of the conduction band, and gives rise to resonant states deep in the valence band. In, on the other hand, behaves like Ga, it does not make noticeable change in the DOS of the host GaSe crystal.



Hide All
1. Dimitriev, V. G., Gurzadyhan, G. G., and Nikogosyan, D. N., Handbook of Nonlinear Optical Crystals(Springer, New York, 1999), p.166.
2. Liu, K., Xu, J., and Zhang, X.-C., Appl. Phys. Lett. 85 (6), 863 (2004)
3. Liu, K., Xu, J., and Zhang, X.-C., Joint 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, pp. 333334 (2004)
4. Shi, W. et al, Appl. Phys. Lett. 80 (21) 38893891 (2002); Optics Lett. 27 (16) 1454-6 (2002); Appl. Phys. Lett. 84 (10) 1635-7 (2003)
5. Yu, B. L., Zeng, F., Kartazayev, V., Alfano, R. R. and Mandal, Krishna C., Appl. Phys. Lett. 87 182104 (2005)
6. Manfredotti, C., Murri, R. and Vasanelli, L., Nucl. Instr. and Meth. 115 (2), 349 (1974)
7. Manfredotti, C., Murri, R., Quirini, A. and Vasanelli, L., Nucl. Instr. and Meth. 131(3), 457 (1975)
8. Mancini, A. M., Manfredotti, C., Murri, R., Rizzo, A., Quirini, A. and Vasanelli, L., IEEE Trans. Nucl. Sci. 23 (1), 189 (1976)
9. Sakai, E., Nakatani, H., Tatsuyama, C. and Takeda, F., IEEE Trans. Nucl. Sci. 35(1), 85 (1988)
10. Nakatani, H., Sakai, E., Tatsuyama, C. and Takeda, F., Nucl. Instr. and Meth. A 283(2), 303 (1989)
11. Yamazaki, T., Nakatani, H. and Ikeda, N., Jpn. J.Appl. Phys. 32 (4), 1857 (1993)
12. Yamazaki, T., Terayama, K., Shimazaki, T. and Nakatani, H., Jpn. J. Appl. Phys. 36(1A), 378 (1997)
13. Fivaz, R. and Mooser, R., Phys. Rev. 163 (3), 743 (1967)
14. Fan, Y., Bauer, M., Kador, L., Allakhverdiev, K. R. and Salaev, E. Yu., J. Appl. Phys. 91, 1081 (2002)
15. Shigetomi, S., Ikari, T. and Nishimura, H., J. Appl. Phys. 69(11), 7936 (1991)
16. Micocci, G., Serra, A., and Tepore, A., J. Appl. Phys. 82 (5), 2365 (1997)
17. Shigetomi, S., Ikari, T., and Nakashima, H., Phys. Stat. Sol. A 160 (1), 159 (1997); S. Shigetomi, T. Ikari, and H. Nakashima, Jpn. J. Appl. Phys 35 (8), 4291 (1996)
18. Capozzi, V. and Minafra, A., J. Phys. C. 14 (29), 4335 (1981)
19. Shigetomi, S. and Ikari, T., J. Appl. Phys. 95 (11), 6480 (2004)
20. Sanchez-Royo, J. F., Errandonea, D., Segura, A., Roa, L., and Chevy, A., J. Appl. Phys. 83, 4750 (1998) and references therein
21. Shure, D. H., Singh, N. B., Balakrishna, V., Fernelius, N. C. and Hopkins, F. K., Optics Lett. 22(11), 775–7 (1997); V. G. Voevodin, O. V. Voevodina, S. A. Bereznaya, Z. V. Korotchenko, A. N. Morozov, S. Yu. Sarkisov, N. C. Fernelius and J. T. Goldstein, Optical Materials 26(9), 495-9 (2004)
22. Pantelides, S. T., Rev. Mod. Phys. 50, 797 (1978)
23. Ahmad, S., Hoang, K., and Mahanti, S. D., Phys. Rev. Lett. 96, 056403 (2006)
24. Ahmad, S., Hoang, K., Mahanti, S. D., and Kanatzidis, M. G., Phys. Rev. B (accepted)
25. D, M. O.. Camara, A. Mauger and Devos, I., Phys. Rev. B 65, 125206 (2002)
26. Boer, Karl W., Survey of Semiconductor Physics, 2nd Edition, Vol. I: Electrons and Other Particles in Semiconductors, p. 765
27. Faulkner, R. A., Phys. Rev. 184, 713 (1969)
28. Madelung, O., Semiconductors: Data Handbook, 3rd edition, Springer, p. 523526
29. Singh, D. J., Planewaves, Pseudopotentials, and the LAPW method (Boston: Kluwer Academic) (1994)
30. Blaha, P. et al., WIEN2K, An Augmented Plane Wave +Local Orbitals Program for Calculating Crystal Properties, K. Schwarz, Techn. Universitat Wien, Austria (2001)
31. P., Perdew J., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)

Electronic structure of Cd, In, Sn substitutional Defects in GaSe

  • Zsolt Rak (a1), Subhendra D Mahanti (a2), Krishna C Mandal (a3) and Nils C Fernelius (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed