Skip to main content Accessibility help
×
Home

Analysis of Electron Transport in a High-Mobility Freestanding GaN Substrate Grown by Hydride Vapor-Phase Epitaxy

  • F. Yun (a1), H. Morkoc (a1), D. L. Rode (a2), K. T. Tsen (a3), L. Farina (a4), C. Kurdak (a4), S. S. Park (a5) and K. Y. Lee (a5)...

Abstract

Semiconductor nitrides grown on substrates with a large lattice mismatch typically contain extended and point defects that prevent the full potential of this material system from being attained. Among allthe substrate options explored so far, freestanding GaN templates appear ideal for homoepitaxial growth of GaN films. To this end, hydride vapor-phase epitaxial (HVPE) grown GaN templates with a thickness of more than 200 μm were thermally lifted off from the sapphire substrate and mechanically polished. The defect densityof such a template is expected to be non-uniform in the growth direction, especially near the back surface which was in close vicinity of the sapphire substrate. We, therefore, studied the transport properties of this template before and after the removal of a 30 μm region from the back-side. For as-prepared GaN, Hall mobilities of 1100 cm2/V-s and 6800 cm2/V-s were obtained at 295 K and 50 K, respectively. A simultaneous fitting of mobility and carrier concentration was used to quantify the contribution ofdifferent scattering mechanisms. When the backside was etched by ∼30 μm, Hall mobilities improved to 1200 cm2/V-s at 295 K and 7385 cmsup2/V-s at 48 K, respectively. A numerical solution of the Boltzmann transport equation (BTE) that deals with the inelastic nature of electron scattering by polar optical mode was employed to determine the acceptor concentration. Raman spectroscopy was employed to obtain LO and TO phonon energies, which were then used in the above-mentioned calculations. The best fittings of the mobility and carrier concentration data yield an average acceptor concentration of 4.9×1015 cm-3 and a donor concentration of 2.1×1016 cm-3 for the as-prepared GaN. The average acceptor concentration decreased to 2.4×1015 cm-3 after etching of the backside, which confirms that the etched-away region contained higher density of defects. The donor activation energy is derived to be 25.2 meV. Our analysis demonstrated high quality of the freestanding GaN substrate with the highest reported electron mobility for wurtzite GaN.

Copyright

Corresponding author

*Corresponding author. Electronic mail: fyun@mail1.vcu.edu

References

Hide All
1 Mohammad, S. N. and Morkoç, H., Progress in Quantum Electronics 20 (5&6), 361(1996).
2 Morkoç, H., Nitride Semiconductors and Devices, Springer, Heidelberg (1999).
3See for example, Jain, S. C., Willander, M., Narayan, J., Overstraeten, R. Van, J. Appl. Phys. 87, 963(2000).
4 Look, D. C., Reynolds, D. C., Hemsky, J. W., Sizelove, J. R., Jones, R. L., and Molnar, R. J., Phys. Rev. Lett. 79, 2273(1997).
5 Heying, B., Smorchkova, I., Poblenz, C., Elsass, C., Fini, P., and Baars, S. Den, Mishra, U., and Speck, J. S., Appl. Phys. Lett. 77, 2885(2000).
6 Manfra, M. J., Pfeiffer, L. N., West, K. W., Stormer, H. L., Baldwin, K. W., Hsu, J. W. P., Lang, D. V., and Molnar, R. J., Appl. Phys. Lett. 77, 2888(2000).
7 Look, D. C.: Electrical Characterization of GaAs Materials and Devices, Wiley, New York, 1989.
8 Look, D. C. and Molnar, R. J., Appl. Phys. Lett. 70, 3377(1997).
9 Rode, D. L., Semiconductors and Semimetals, (Academic, New York 1975), Vol.10, pp. 190.
10 Kelly, M. K., Vando, R. P., Phanse, V. M., Gorgens, L., Ambacher, O., Stutzmann, M., Jpn. J. Appl. Phys. Part 2, 38, L217(1999).
11 Yun, F., Reshchikov, M. A., Jones, K. M., Visconti, P., Morkoç, H., Park, S. S. and Lee, K. Y., Solid-State Electronics, 44, 2225(2000).
12 Jasinski, J., Swider, W., Liliental-Weber, Z., Visconti, P., Jones, K. M., Reshchikov, M. A., Yun, F., Morkoç, H., Park, S. S. and Lee, K. Y., Appl. Phys. Lett. In press, 2001.
13 Fang, Z-Q., Look, D. C., Visconti, P., Wang, D-F., Lu, C-Z., Yun, F., Morkoç, H., Park, S. S., and Lee, K. Y., Appl. Phys. Lett. 78, 2178(2001).
14 Lin, M. E., Ma, Z., Huang, F. Y., Fan, Z. F., Allen, L. H., and Morkoç, H., Appl. Phys. Lett. 64, 1003(1994).
15 Ehrenreich, H., J. Phys. Chem. Solids 8, 130(1959).
16 Anderson, D. A., Aspley, N., Semicond. Sci. Technol. 1, 187(1986).
17 Erginsoy, C., Phys. Rev. 83, 879(1951).
18 Look, D. C., Sizelove, J. R., Keller, S., Wu, Y. F., Mishra, U. K., DenBaars, S. P., Solid State Commun. 102, 297(1997).
19 Hsu, L. and Walukiewicz, W., Phys. Rev. B56, 1520(1997).
20 Visconti, P., Jones, K. M., Reshchikov, M. A., Yun, F., Cingolani, r., Morkoç, H., Park, S. S., and Lee, K. Y., Appl. Phys. Lett. 77, 3743(2000).
21 Ng, H. M., Doppalapudi, D., Moustakas, T. D., Weimann, N. G., and Eastman, L. F., Appl. Phys. Lett. 73, 821(1998).
22 Zhu, Q. S. and Sawaki, N., Appl. Phys. Lett. 76, 1594(2000).
23 Wang, Y. J., Kaplan, R., Ng, H. K., Doverspike, K., Gaskill, D. K., Ikedo, T., Akasaki, I., and Amono, H., J. Appl. Phys. 79, 8007(1996).

Analysis of Electron Transport in a High-Mobility Freestanding GaN Substrate Grown by Hydride Vapor-Phase Epitaxy

  • F. Yun (a1), H. Morkoc (a1), D. L. Rode (a2), K. T. Tsen (a3), L. Farina (a4), C. Kurdak (a4), S. S. Park (a5) and K. Y. Lee (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed