Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.279 Render date: 2021-03-02T18:15:21.865Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Impact of Metal Contamination of 7.0nm Gate Oxides on Various Substrate Materials

Published online by Cambridge University Press:  10 February 2011

S. Saito
Affiliation:
ULSI Device Develop. Labs., NEC, 1120 Shimokuzawa, Sagamihara, 229-11 JAPAN
K. Hamada
Affiliation:
ULSI Device Develop. Labs., NEC, 1120 Shimokuzawa, Sagamihara, 229-11 JAPAN
D. J. Eaglesham
Affiliation:
Bell Labs., Lucent Technologies, 600 Mountain Avenue, Murray hill, NJ 07974
Y. Shiramizu
Affiliation:
ULSI Device Develop. Labs., NEC, 1120 Shimokuzawa, Sagamihara, 229-11 JAPAN
J. L. Benton
Affiliation:
Bell Labs., Lucent Technologies, 600 Mountain Avenue, Murray hill, NJ 07974
H. Kitajima
Affiliation:
ULSI Device Develop. Labs., NEC, 1120 Shimokuzawa, Sagamihara, 229-11 JAPAN
S. D. C. Jacobson
Affiliation:
Bell Labs., Lucent Technologies, 600 Mountain Avenue, Murray hill, NJ 07974
J. M. Poate
Affiliation:
Bell Labs., Lucent Technologies, 600 Mountain Avenue, Murray hill, NJ 07974
Get access

Abstract

Metal contamination level will be decreased in order to maintain a device reliability according to device size reduction. Metal contamination from various processes are surveyed. The influence of metal contamination for 7–15nm thick gate oxides is discussed in order to clarify the critical concentration to gate oxides. NIG(Non Intrinsic Gettering) substrates are used in a worst case for gettering. Fe contamination with 4×1010 cm−2 strongly affects the TDDM characteristics, although there is no serious influence in the breakdown voltage even at the concentration of 5×1011 cm−2. The same tendency is observed for Cu contaminant and the critical concentration for TDDB characteristics is around 3×1011 cm−2. High energy B implantation is carried out to form gettering sites near device region. Breakdown voltage and TDDB characteristics are almost the same as epitaxial substrates at Fe concentration up to l×1012 Cm−2. Detailed examination such as SIMS, C-t and DLTS measurements is also supported the effectiveness in high energy gettering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Shiramizu, Y. and Kitajima, H., Extended Abstracts of the 1995 Conference on Solid State Devices and Materials, p273 (1995)Google Scholar
2. Ryuta, J., Yoshimi, T.,, Kondo, H., Okuda, H. and Shimanuki, Y., Jpn.J.Appl.Phys. 31, p2338(1992)CrossRefGoogle Scholar
3. Shiramizu, Y., Tanaka, M., Yamazaki, S., nakamofi, M., Aoto, N. and Kitajima, H., Extended Abstracts of the 1996 Conference on Solid State Devices and Materials, p362 (1996)Google Scholar
4. Benton, J.L., Stolk, P.A., Eaglesham, D.J., Jacobson, D.C., Cheng, J.Y., Poate, J.M., Myers, S.M. and Haynes, T.E., J.Electrochem. Soc., 143, p 1406(1996)CrossRefGoogle Scholar
5. Hamada, K., Eaglesham, D.J., Hayashi, T., Poate, J.M. and Saito, S., Extended Abstracts of the 1996 Conference on Solid State Devices and Materials, p854 (1996)Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Impact of Metal Contamination of 7.0nm Gate Oxides on Various Substrate Materials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Impact of Metal Contamination of 7.0nm Gate Oxides on Various Substrate Materials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Impact of Metal Contamination of 7.0nm Gate Oxides on Various Substrate Materials
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *