Skip to main content Accessibility help

AB Initio Pseudopotential Calculations of Dopant Diffusion in SI

  • Jing Zhu (a1)


The ab initio pseudopotential method is used to study transient-enhanced-diffusion (TED) related processes. The electronic degrees of freedom are included explicitly, together with the fully self-consistent treatment of the electron charge density. A large supercell and a fine k-point mesh are used to ensure numerical convergence. Such method has been demonstrated to give quantitative description of defect energetics. We will show that boron diffusion is significantly enhanced in the presence of the Si interstitial due to the substantial lowering of the migrational barrier through a kick-out mechanism. The resulting mobile boron can also be trapped by another substitutional boron, forming an immobile and electrically inactive two-boron pair. Similarly, carbon diffusion is also enhanced significantly due to the pairing with Si interstitiels. However, carbon binds to Si interstitials much more strongly than boron does, taking away most Si interstitials from boron at sufficiently large carbon concentration, which causes the suppression of the boron TED. We will also show that Fermi level effect plays an important role in both Si intersititial and boron diffusion.



Hide All
For a review, please see Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).
2. Mitchel, A. E., Nucl. Instr. Meth. B 37/38, 379 (1989).
3. Stolk, P. A., Eaglesham, D. J., Gossmann, H. J., and Poate, J. M., Appl. Phys. Lett. 66, 1370 (1995).
4. Gilmer, G. H. et al., to be published in this proceeding.
5. Caturla, M. et al., to be published in this proceeding.
6. Nichols, C. S., Van de Walle, C. G., and Pantelides, S. T., Phys. Rev. Lett. 62, 1049 (1989); Phys. Rev. B 40, 5484 (1989)
7. Tarnow, E., Europhys. Lett., 16, 449 (1991);
Tarnow, E., J. Phys.: Condens. Matter 4 5405 (1992)
8. Capaz, R. B., Dal Pino, A. Jr, and Joannopoulos, J. D., Phys. Rev. B 50, 7439 (1994)
9. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).
10. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).
11. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).
12. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).
13. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).
14. Kohn, and Sham, , Phys. Rev. 140, A 1133 (1965).
15. Zhu, J., Diaz de la Rubia, T., Yang, L. H., Mailhiot, C., and Gilmer, G. H., Phys. Rev. B 54, 4741 (1996)
16. Schober, H. R., Phys. Rev. B 39, 13013 (1989).
17. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46 6671 (1992); 48, 4978 (1993).
18. Tang, M., Colombo, L., Zhu, J., and Diaz de la Rubia, T., Phys. Rev. B, to be published.
19. Gösele, U., Plöβl, A., and Tan, T. Y., in Process Physics and Modeling in Semiconductor Technology, edited by Srinivasan, G. R., Murthy, C. S., and Dunham, S. T. (Electrochemical Society, Pennington, New Jersey, 1996), p. 309.
20. Watkins, G. D., Phys. Rev. B 12, 5824 (1975); G. D. Watkins, private communication.
21. Watkins, G. D. and Brower, K. L., Phys. Rev. Lett. 36, 1329 (1976)
22. Song, L. W. and Watkins, G. D., Phys. Rev. B 42, 5759 (1990).
23. Rollert, F., Stolwijk, N. A., and Mehrer, H., Proc. 15th Int. Conf. on Defects in Semiconductors, Budapest 1988.
24. Song, L. W., Zhan, X. D., Benson, B. W., and Watkins, G. D., Phys. Rev. B 42, 5765 (1990)

AB Initio Pseudopotential Calculations of Dopant Diffusion in SI

  • Jing Zhu (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed