Skip to main content Accessibility help

High-rate lithium ion energy storage to facilitate increased penetration of photovoltaic systems in electricity grids

  • Alison Lennon (a1), Yu Jiang (a1), Charles Hall (a1), Derwin Lau (a1), Ning Song (a1), Patrick Burr (a2), Clare P. Grey (a3) and Kent J. Griffith (a4)...


High-rate lithium ion batteries with long cycling lives can provide electricity grid stabilization services in the presence of large fractions of intermittent generators, such as photovoltaics. Engineering for high rate and long cycle life requires an appropriate selection of materials for both electrode and electrolyte and an understanding of how these materials degrade with use. High-rate lithium ion batteries can also facilitate faster charging of electric vehicles and provide higher energy density alternatives to supercapacitors in mass transport applications.

High-rate lithium ion batteries can play a critical role in decarbonizing our energy systems both through their underpinning of the transition to use renewable energy resources, such as photovoltaics, and electrification of transport. Their ability to be rapidly and frequently charged and discharged can enable this energy storage technology to play a key role in stabilizing future low-carbon electricity networks which integrate large fractions of intermittent renewable energy generators. This decarbonizing transition will require lithium ion technology to provide increased power and longer cycle lives at reduced cost. Rate performance and cycle life are ultimately limited by the materials used and the kinetics associated with the charge transfer reactions and ionic and electronic conduction. We review material strategies for electrode materials and electrolytes that can facilitate high rates and long cycle lives and discuss the important issues of cost, resource availability and recycling.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High-rate lithium ion energy storage to facilitate increased penetration of photovoltaic systems in electricity grids
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High-rate lithium ion energy storage to facilitate increased penetration of photovoltaic systems in electricity grids
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High-rate lithium ion energy storage to facilitate increased penetration of photovoltaic systems in electricity grids
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

a)Address all correspondence to Alison Lennon at


Hide All
1.Edison, T.: Storage Batteries (New York, 1883). Available at: (accessed October 22, 2018).
2.Tsao, J.Y., Schubert, E.F., Fouquet, R., and Lave, M.: The electrification of energy: Long-term trends and opportunities. MRS Energy Sustain. 5, E7 (2018).
3.Michalek, J.J., Chester, M., Jaramillo, P., Samaras, C., Shiau, C.-S.N., and Lave, L.B.: Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits. Proc. Natl. Acad. Sci. U. S. A. 108(40), 1655416558 (2011).
4.Traut, E., Hendrickson, C., Klampfl, E., Liu, Y., and Michalek, J.J.: Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost. Energy Policy 51, 524534 (2012).
5.IRENA: Electricity Storage and Renewables: Costs and Markets to (2030). Available at: (accessed July 1, 2018).
6.IRENA: Renewable Energy Statistics. Available at: (accessed March 8, 2019).
7.Creutzig, F., Agoston, P., Goldschmidt, J.C., Luderer, G., Nemet, G., and Pietzcker, R.C.: The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2, 17140 (2017).
8.ITRPV: International Technology Roadmap for Photovoltaic Results (2017). Available at: (accessed October 6, 2018).
9.Jacobson, M.Z., Delucchi, M.A., Bazouin, G., Bauer, Z.A.F., Heavey, C.C., Fisher, E., Morris, S.B., Piekutowski, D.J.Y., Vencill, T.A., and Yeskoo, T.W.: 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1(1), 108121 (2017).
10.Clack, C.T.M., Qvist, S.A., Apt, J., Bazilian, M., Brandt, A.R., Caldeira, K., Davis, S.J., Diakov, V., Handschy, M.A., Hines, P.D.H., Jaramillo, P., Kammen, D.M., Long, J.C.S., Granger Morgan, M., Reed, A., Sivaram, V., Sweeney, J., Tynan, G.R., Victor, D.G., Weyant, J.P., and Whitacre, J.F.: Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proc. Natl. Acad. Sci. U. S. A. 114(26), 67226727 (2017).
11.Rogelj, J., Popp, A., Calvin, K.V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van Vuuren, D.P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E., and Tavoni, M.: Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8(4), 325332 (2018).
12.Jones-Albertus, R., Cole, W., Denholm, P., Feldman, D., Woodhouse, M., and Margolis, R.: Solar on the rise: How cost declines and grid integration shape solar’s growth potential in the United States. MRS Energy Sustain. 5, E4 (2018).
13.Babrowski, S., Heinrichs, H., Jochem, P., and Fichtner, W.: Load shift potential of electric vehicles in Europe. J. Power Sources 255, 283293 (2014).
14.López, M.A., de la Torre, S., Martín, S., and Aguado, J.A.: Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support. Int. J. Electr. Power Energy Syst. 64, 689698 (2015).
15.Aziz, M., Oda, T., Mitani, T., Watanabe, Y., and Kashiwagi, T.: Utilization of electric vehicles and their used batteries for peak-load shifting. Energies 8(5), 3720 (2015).
16.Gnann, T., Klingler, A.-L., and Kühnbach, M.: The load shift potential of plug-in electric vehicles with different amounts of charging infrastructure. J. Power Sources 390, 2029 (2018).
17.Byrne, R.H., Nguyen, T.A., Copp, D.A., Chalamala, B.R., and Gyuk, I.: Energy management and optimization methods for grid energy storage systems. IEEE Access 6, 1323113260 (2018).
18.Marcos, J., Marroyo, L., Lorenzo, E., Alvira, D., and Izco, E.: Power output fluctuations in large scale pv plants: One year observations with one second resolution and a derived analytic model. Prog. Photovoltaics Res. Appl. 19(2), 218227 (2011).
19.Pourmousavi, S.A., Cifala, A.S., and Nehrir, M.H.: Impact of high penetration of PV generation on frequency and voltage in a distribution feeder. In Proceedings of the 2012 North American Power Symposium (NAPS) (IEEE, 2012); pp. 18.
20.Shah, R., Mithulananthan, N., Bansal, R.C., and Ramachandaramurthy, V.K.: A review of key power system stability challenges for large-scale PV integration. Renewable Sustainable Energy Rev. 41, 14231436 (2015).
21.Anvari, M., Lohmann, G., Wächter, M., Milan, P., Lorenz, E., Heinemann, D., Tabar, M.R.R., and Joachim, P.: Short term fluctuations of wind and solar power systems. New J. Phys. 18(6), 063027 (2016).
22.Jiang, Y., Fletcher, J., Burr, P., Hall, C., Zheng, B., Wang, D.-W., Ouyang, Z., and Lennon, A.: Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power. J. Power Sources 384, 396407 (2018).
23.Kroposki, B., Johnson, B., Zhang, Y., Gevorgian, V., Denholm, P., Hodge, B., and Hannegan, B.: Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy. IEEE Power Energy Mag. 15(2), 6173 (2017).
24.Serban, I. and Ion, C.P.: Microgrid control based on a grid-forming inverter operating as virtual synchronous generator with enhanced dynamic response capability. Int. J. Electr. Power Energy Syst. 89, 94105 (2017).
25.Denis, G., Prevost, T., Debry, M., Xavier, F., Guillaud, X., and Menze, A.: The migrate project: The challenges of operating a transmission grid with only inverter-based generation. A grid-forming control improvement with transient current-limiting control. IET Renew. Power Gener. 12(5), 523529 (2018).
26.Chunsheng, W., Hua, L., Zilong, Y., Yibo, W., and Honghua, X.: Voltage and frequency control of inverters connected in parallel forming a micro-grid. In Proceedings of the 2010 International Conference on Power System Technology (IEEE, 2010); pp. 16.
27.Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galvan, E., PortilloGuisado, R.C., Prats, M.A.M., Leon, J.I., and Moreno-Alfonso, N.: Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Trans. Ind. Electron. 53(4), 10021016 (2006).
28.Marcos, J., Marroyo, L., Lorenzo, E., and García, M.: Smoothing of PV power fluctuations by geographical dispersion. Prog. Photovoltaics Res. Appl. 20(2), 226237 (2012).
29.Delille, G., Francois, B., and Malarange, G.: Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia. IEEE Trans. Sustain. Energy 3(4), 931939 (2012).
30.Swierczynski, M., Stroe, D.I., Stan, A.I., Teodorescu, R., and Sauer, D.U.: Selection and performance-degradation modeling of LiMO2/Li4Ti5O12 and LiFePO4/C battery cells as suitable energy storage systems for grid integration with wind power plants: An example for the primary frequency regulation service. IEEE Trans. Sustain. Energy 5(1), 90101 (2014).
31.Marcos, J., Storkël, O., Marroyo, L., Garcia, M., and Lorenzo, E.: Storage requirements for PV power ramp-rate control. Sol. Energy 99, 2835 (2014).
32.Schnabel, J. and Valkealahti, S.: Energy storage requirements for PV power ramp rate control in northern Europe. Int. J. Photoenergy 2016, 11 (2016).
33.Greenwood, D.M., Lim, K.Y., Patsios, C., Lyons, P.F., Lim, Y.S., and Taylor, P.C.: Frequency response services designed for energy storage. Appl. Energy 203, 115127 (2017).
34.Nishi, Y.: The development of lithium ion secondary batteries. Chem. Rec. 1(5), 406413 (2001).
35.Goodenough, J.B. and Park, K.-S.: The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135(4), 11671176 (2013).
36.Blomgren, G.E.: The development and future of lithium ion batteries. J. Electrochem. Soc. 164(1), A5019A5025 (2017).
37.Dunn, B., Kamath, H., and Tarascon, J.-M.: Electrical energy storage for the grid: A battery of choices. Science 334(6058), 928935 (2011).
38.Zaghib, K., Mauger, A., Groult, H., Goodenough, J., and Julien, C.: Advanced electrodes for high power Li-ion batteries. Materials 6(3), 1028 (2013).
39.Thorbergsson, E., Knap, V., Swierczynski, M., Stroe, D., and Teodorescu, R.: Primary frequency regulation with Li-ion battery based energy storage system—Evaluation and comparison of different control strategies. In Proceedings of the 35th International Telecommunications Energy Conference (IEEE, 2013); pp. 16.
40.Hesse, H., Schimpe, M., Kucevic, D., and Jossen, A.: Lithium-ion battery storage for the grid—A review of stationary battery storage system design tailored for applications in modern power grids. Energies 10(12), 2107 (2017).
41.ARPA-E: Duration Addition to Electricity Storage (DAYS): Technical Overview Document. Available at: (accessed March 8, 2019).
42.Sbordone, D., Bertini, I., Di Pietra, B., Falvo, M.C., Genovese, A., and Martirano, L.: EV fast charging stations and energy storage technologies: A real implementation in the smart micro grid paradigm. Electr. Power Syst. Res. 120, 96108 (2015).
43.Armand, M.B.: Intercalation electrodes. In Materials for Advanced Batteries, Murphy, D., ed. (Springer US, Boston, Massachusetts, 1980); pp. 145161.
44.Janek, J. and Zeier, W.G.: A solid future for battery development. Nat. Energy 1, 16141 (2016).
45.Quinn, J.B., Waldmann, T., Richter, K., Kasper, M., and Wohlfahrt-Mehrens, M.: Energy density of cylindrical Li-ion cells: A comparison of commercial 18650 to the 21700 cells. J. Electrochem. Soc. 165(14), A3284A3291 (2018).
46.An, S.J., Li, J., Daniel, C., Mohanty, D., Nagpure, S., and Wood, D.L.: The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 5276 (2016).
47.Peled, E. and Menkin, S.: Review—SEI: Past, present and future. J. Electrochem. Soc. 164(7), A1703A1719 (2017).
48.Wang, A., Kadam, S., Li, H., Shi, S., and Qi, Y.: Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 4(1), 15 (2018).
49.Somerville, L., Bareño, J., Trask, S., Jennings, P., McGordon, A., Lyness, C., and Bloom, I.: The effect of charging rate on the graphite electrode of commercial lithium-ion cells: A post-mortem study. J. Power Sources 335, 189196 (2016).
50.Vetter, J., Novák, P., Wagner, M.R., Veit, C., Möller, K.C., Besenhard, J.O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., and Hammouche, A.: Ageing mechanisms in lithium-ion batteries. J. Power Sources 147(1), 269281 (2005).
51.Zhao, K., Pharr, M., Vlassak, J.J., and Suoa, Z.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108(7), 073517 (2010).
52.Wen, J., Yu, Y., and Chen, C.: A review on lithium-ion batteries safety issues: Existing problems and possible solutions. Mater. Express 2(3), 197212 (2012).
53.Downie, L.E., Krause, L.J., Burns, J.C., Jensen, L.D., Chevrier, V.L., and Dahn, J.R.: In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry. J. Electrochem. Soc. 160(4), A588A594 (2013).
54.Deng, D.: Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 3(5), 385418 (2015).
55.Liu, K., Liu, Y., Lin, D., Pei, A., and Cui, Y.: Materials for lithium-ion battery safety. Sci. Adv. 4(6), eaas9820 (2018).
56.Takami, N., Satoh, A., Hara, M., and Ohsaki, T.: Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 142(2), 371379 (1995).
57.Levi, M.D. and Aurbach, D.: Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J. Phys. Chem. B 101(23), 46414647 (1997).
58.Kaskhedikar, N.A. and Maier, J.: Lithium storage in carbon nanostructures. Adv. Mater. 21(25-26), 26642680 (2009).
59.Nitta, N., Wu, F., Lee, J.T., and Yushin, G.: Li-ion battery materials: Present and future. Mater. Today 18(5), 252264 (2015).
60.Schipper, F., Erickson, E.M., Erk, C., Shin, J.-Y., Chesneau, F.F., and Aurbach, D.: Review—Recent advances and remaining challenges for lithium ion battery cathodes: I. Nickel-rich, LiNixCoyMnzO2. J. Electrochem. Soc. 164(1), A6220A6228 (2017).
61.Tarascon, J.M. and Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).
62.Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 43034418 (2004).
63.Eftekhari, A.: Lithium-ion batteries with high rate capabilities. ACS Sustainable Chem. Eng. 5(4), 27992816 (2017).
64.Liu, Q., Du, C., Shen, B., Zuo, P., Cheng, X., Ma, Y., Yin, G., and Gao, Y.: Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Adv. 6(91), 8868388700 (2016).
65.Jansen, A.N., Kahaian, A.J., Kepler, K.D., Nelson, P.A., Amine, K., Dees, D.W., Vissers, D.R., and Thackeray, M.M.: Development of a high-power lithium-ion battery. J. Power Sources 81–82, 902905 (1999).
66.Ferg, E., Gummow, R.J., de Kock, A., and Thackeray, M.M.: Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 141(11), L147L150 (1994).
67.Colbow, K.M., Dahn, J.R., and Haering, R.R.: Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4. J. Power Sources 26(3), 397402 (1989).
68.Ohzuku, T., Ueda, A., and Yamamoto, N.: Zero-strain insertion material of Li [ Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142(5), 14311435 (1995).
69.Sandhya, C.P., John, B., and Gouri, C.J.I.: Lithium titanate as anode material for lithium-ion cells: A review. Ionics 20(5), 601620 (2014).
70.Yang, Z., Choi, D., Kerisit, S., Rosso, K.M., Wang, D., Zhang, J., Graff, G., and Liu, J.: Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 192(2), 588598 (2009).
71.Madian, M., Eychmüller, A., and Giebeler, L.: Current advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries. Batteries 4(1), 7 (2018).
72.Wen, C.J., Boukamp, B.A., Huggins, R.A., and Weppner, W.: Thermodynamic and mass transport properties of “ LiAl ”. J. Electrochem. Soc. 126(12), 22582266 (1979).
73.Takami, N., Kosugi, S., and Inagaki, H.: New SCiB™ high-safety rechargeable battery for HEV application. Toshiba Rev. 63(12), 5457 (2008).
74.Takami, N., Inagaki, H., Kishi, T., Harada, Y., Fujita, Y., and Hoshina, K.: Electrochemical kinetics and safety of 2-volt class Li-ion battery system using lithium titanium oxide anode. J. Electrochem. Soc. 156(2), A128A132 (2009).
75.Manev, V. and John Shelburne, J.: Method for preparing a lithium ion cell. U.S. Patent No. 8420264, April 16, 2013.
76.Toshiba: SCiB™ Cells. Available at: (accessed October 22, 2018).
77.Ge, H., Li, N., Li, D., Dai, C., and Wang, D.: Study on the theoretical capacity of spinel lithium titanate induced by low-potential intercalation. J. Phys. Chem. C 113(16), 63246326 (2009).
78.Wang, C., Wang, S., Tang, L., He, Y.-B., Gan, L., Li, J., Du, H., Li, B., Lin, Z., and Kang, F.: A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy 21, 133144 (2016).
79.Odziomek, M., Chaput, F., Rutkowska, A., Świerczek, K., Olszewska, D., Sitarz, M., Lerouge, F., and Parola, S.: Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat. Commun. 8, 15636 (2017).
80.Marchand, R., Brohan, L., and Tournoux, M.: TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 15, 11291133 (1980).
81.Brumbarov, J., Vivek, J.P., Leonardi, S., Valero-Vidal, C., Portenkirchner, E., and Kunze-Liebhäuser, J.: Oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li-ion intercalation. J. Mater. Chem. A 3(32), 1646916477 (2015).
82.Auer, A., Steiner, D., Portenkirchner, E., and Kunze-Liebhäuser, J.: Nonequilibrium phase transitions in amorphous and anatase TiO2 nanotubes. ACS Appl. Energy Mater. 1(5), 19241929 (2018).
83.Zukalová, M., Kalbáč, M., Kavan, L., Exnar, I., and Graetzel, M.: Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17(5), 12481255 (2005).
84.Ren, Y., Liu, Z., Pourpoint, F., Armstrong, A.R., Grey, C.P., and Bruce, P.G.: Nanoparticulate TiO2(B): An anode for lithium-ion batteries. Angew. Chem. 51(9), 21642167 (2012).
85.Arrouvel, C., Parker, S.C., and Islam, M.S.: Lithium insertion and transport in the TiO2–B anode material: A computational study. Chem. Mater. 21(20), 47784783 (2009).
86.Dalton, A.S., Belak, A.A., and Van der Ven, A.: Thermodynamics of lithium in TiO2(B) from first principles. Chem. Mater. 24(9), 15681574 (2012).
87.Tian, B., Xiang, H., Zhang, L., Li, Z., and Wang, H.: Niobium doped lithium titanate as a high rate anode material for Li-ion batteries. Electrochim. Acta 55(19), 54535458 (2010).
88.Han, J.-T., Huang, Y.-H., and Goodenough, J.B.: New anode framework for rechargeable lithium batteries. Chem. Mater. 23(8), 20272029 (2011).
89.Anh, L.T., Rai, A.K., Thi, T.V., Gim, J., Kim, S., Shin, E.-C., Lee, J.-S., and Kim, J.: Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries. J. Power Sources 243, 891898 (2013).
90.Lin, C., Wang, G., Lin, S., Li, J., and Lu, L.: TiNb6O17: A new electrode material for lithium-ion batteries. Chem. Commun. 51(43), 89708973 (2015).
91.Lee, Y.-S. and Ryu, K.-S.: Study of the lithium diffusion properties and high rate performance of TiNb6O17 as an anode in lithium secondary battery. Sci. Rep. 7(1), 16617 (2017).
92.Griffith, K.J., Senyshyn, A., and Grey, C.P.: Structural stability from crystallographic shear in TiO2–Nb2O5 phases: Cation ordering and lithiation behavior of TiNb24O62. Inorg. Chem. 56(7), 40024010 (2017).
93.Takami, N., Ise, K., Harada, Y., Iwasaki, T., Kishi, T., and Hoshina, K.: High-energy, fast-charging, long-life lithium-ion batteries using TiNb2O7 anodes for automotive applications. J. Power Sources 396, 429436 (2018).
94.Wu, X., Miao, J., Han, W., Hu, Y.-S., Chen, D., Lee, J.-S., Kim, J., and Chen, L.: Investigation on Ti2Nb10O29 anode material for lithium-ion batteries. Electrochem. Commun. 25, 3942 (2012).
95.Griffith, K.J., Wiaderek, K.M., Cibin, G., Marbella, L.E., and Grey, C.P.: Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559(7715), 556563 (2018).
96.Daramalla, V., Venkatesh, G., Kishore, B., Munichandraiah, N., and Krupanidhi, S.B.: Superior electrochemical performance of amorphous titanium niobium oxide thin films for Li-ion thin film batteries. J. Electrochem. Soc. 165(5), A764A772 (2018).
97.Wohlfahrt-Mehrens, M., Vogler, C., and Garche, J.: Aging mechanisms of lithium cathode materials. J. Power Sources 127(1), 5864 (2004).
98.Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 11881194 (1997).
99.Kang, B. and Ceder, G.: Battery materials for ultrafast charging and discharging. Nature 458(7235), 190193 (2009).
100.Morgan, D., Van der Ven, A., and Ceder, G.: Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett. 7(2), A30A32 (2004).
101.Islam, M.S., Driscoll, D.J., Fisher, C.A.J., and Slater, P.R.: Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 17(20), 50855092 (2005).
102.Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M., and Armand, M.: Electroactivity of natural and synthetic triphylite. J. Power Sources 97–98, 503507 (2001).
103.Doeff, M.M., Hu, Y., McLarnon, F., and Kostecki, R.: Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid-State Lett. 6(10), A207A209 (2003).
104.Herle, P.S., Ellis, B., Coombs, N., and Nazar, L.F.: Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147 (2004).
105.Bai, P., Cogswell, D.A., and Bazant, M.Z.: Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett. 11(11), 48904896 (2011).
106.Malik, R., Zhou, F., and Ceder, G.: Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 10, 587 (2011).
107.Wagemaker, M., Singh, D.P., Borghols, W.J.H., Lafont, U., Haverkate, L., Peterson, V.K., and Mulder, F.M.: Dynamic solubility limits in nanosized olivine LiFePO4. J. Am. Chem. Soc. 133(26), 1022210228 (2011).
108.Liu, H., Strobridge, F.C., Borkiewicz, O.J., Wiaderek, K.M., Chapman, K.W., Chupas, P.J., and Grey, C.P.: Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344(6191), 1252817 (2014).
109.Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., and van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005).
110.Bandaru, P.R., Yamada, H., Narayanan, R., and Hoefer, M.: Charge transfer and storage in nanostructures. Mater. Sci. Eng., R 96, 169 (2015).
111.Bae, C.-J., Erdonmez, C.K., Halloran, J.W., and Chiang, Y.-M.: Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance. Adv. Mater. 25(9), 12541258 (2013).
112.Habedank, J.B., Kraft, L., Rheinfeld, A., Krezdorn, C., Jossen, A., and Zaeh, M.F.: Increasing the discharge rate capability of lithium-ion cells with laser-structured graphite anodes: Modeling and simulation. J. Electrochem. Soc. 165(7), A1563A1573 (2018).
113.Mangang, M., Seifert, H.J., and Pfleging, W.: Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes. J. Power Sources 304, 2432 (2016).
114.Petkovich, N.D. and Stein, A.: Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem. Soc. Rev. 42(9), 37213739 (2013).
115.Osiak, M., Geaney, H., Armstrong, E., and O’Dwyer, C.: Structuring materials for lithium-ion batteries: Advancements in nanomaterial structure, composition, and defined assembly on cell performance. J. Mater. Chem. A 2(25), 94339460 (2014).
116.Sakamoto, J.S. and Dunn, B.: Hierarchical battery electrodes based on inverted opal structures. J. Mater. Chem. 12(10), 28592861 (2002).
117.Li, W., Liu, J., and Zhao, D.: Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016).
118.Delattre, B., Amin, R., Sander, J., De Coninck, J., Tomsia, A.P., and Chiang, Y.-M.: Impact of pore tortuosity on electrode kinetics in lithium battery electrodes: Study in directionally freeze-cast LiNi0.8Co0.15Al0.05O2 (NCA). J. Electrochem. Soc. 165(2), A388A395 (2018).
119.Guo, Y.-G., Hu, J.-S., and Wan, L.-J.: Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20(15), 28782887 (2008).
120.Bruce, P.G., Scrosati, B., and Tarascon, J.-M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 47(16), 29302946 (2008).
121.Sun, Y.-K., Chen, Z., Noh, H.-J., Lee, D.-J., Jung, H.-G., Ren, Y., Wang, S., Yoon, C.S., Myung, S.-T., and Amine, K.: Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942 (2012).
122.Wu, H.B., Chen, J.S., Hng, H.H., and Wen Lou, X.: Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8), 25262542 (2012).
123.Lee, K., Mazare, A., and Schmuki, P.: One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 114(19), 93859454 (2014).
124.Zhang, J. and Yu, A.: Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci. Bull. 60(9), 823838 (2015).
125.Palacin, M.R., Simon, P., and Tarascon, J.M.: Nanomaterials for electrochemical energy storage: The good and the bad. Acta Chim. Slov. 63(3), 7 (2016).
126.Li, X. and Sun, X.: Nanostructured materials for Li-ion batteries and beyond. Nanomaterials 6(4), 63 (2016).
127.Zhang, X., Porras-Gutierrez, A.-G., Mauger, A., Groult, H., and Julien, C.: Nanotechnology of positive electrodes for Li-ion batteries. Inorganics 5(2), 25 (2017).
128.Obrovac, M.N. and Dahn, J.R.: Implications of finite-size and surface effects on nanosize intercalation materials. Phys. Rev. B 61(10), 67136719 (2000).
129.Delmer, O., Balaya, P., Kienle, L., and Maier, J.: Enhanced potential of amorphous electrode materials: Case study of RuO2. Adv. Mater. 20(3), 501505 (2008).
130.Pean, C., Daffos, B., Rotenberg, B., Levitz, P., Haefele, M., Taberna, P.-L., Simon, P., and Salanne, M.: Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 137(39), 1262712632 (2015).
131.Kondrat, S. and Kornyshev, A.A.: Pressing a spring: What does it take to maximize the energy storage in nanoporous supercapacitors? Nanoscale Horiz. 1(1), 4552 (2016).
132.Fichtner, M.: Nanoconfinement effects in energy storage materials. Phys. Chem. Chem. Phys. 13(48), 2118621195 (2011).
133.Salanne, M., Rotenberg, B., Naoi, K., Kaneko, K., Taberna, P.L., Grey, C.P., Dunn, B., and Simon, P.: Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).
134.Augustyn, V. and Gogotsi, Y.: 2D materials with nanoconfined fluids for electrochemical energy storage. Joule 1(3), 443452 (2017).
135.Prehal, C., Koczwara, C., Jäckel, N., Schreiber, A., Burian, M., Amenitsch, H., Hartmann, M.A., Presser, V., and Paris, O.: Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Energy 2, 16215 (2017).
136.Yue, Y. and Liang, H.: 3D current collectors for lithium-ion batteries: A topical review. Small Methods 2(8), 1800056 (2018).
137.Wang, Y.-Q., Gu, L., Guo, Y.-G., Li, H., He, X.-Q., Tsukimoto, S., Ikuhara, Y., and Wan, L.-J.: Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134(18), 78747879 (2012).
138.Lu, X., Gu, L., Hu, Y.-S., Chiu, H.-C., Li, H., Demopoulos, G.P., and Chen, L.: New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12 anode. J. Am. Chem. Soc. 137(4), 15811586 (2015).
139.Wang, L., Liang, K., Wang, G., and Yang, Y.: Interface-engineered hematite nanocones as binder-free electrodes for high-performance lithium-ion batteries. J. Mater. Chem. A 6(28), 1396813974 (2018).
140.Choi, H., Park, H., Um, J.H., Yoon, W.-S., and Choe, H.: Processing and characterization of titanium dioxide grown on titanium foam for potential use as Li-ion electrode. Appl. Surf. Sci. 411, 363367 (2017).
141.Cui, Y. and Zhang, H.: Synthesis of MoO2 and nitrogen-doped carbon nanotubes composite materials by electrodeposition as binder-free electrode for lithium-ion batteries. In ECS Meeting Abstracts MA2015-02(8) (The Electrochemical Society, 2015); p. 542.
142.Ji, H., Zhang, L., Pettes, M.T., Li, H., Chen, S., Shi, L., Piner, R., and Ruoff, R.S.: Ultrathin graphite foam: A three-dimensional conductive network for battery electrodes. Nano Lett. 12(5), 24462451 (2012).
143.Yao, M., Okuno, K., Iwaki, T., Awazu, T., and Sakai, T.: Long cycle-life LiFePO4/Cu–Sn lithium ion battery using foam-type three-dimensional current collector. J. Power Sources 195(7), 20772081 (2010).
144.Bi, Z., Paranthaman, M.P., Menchhofer, P.A., Dehoff, R.R., Bridges, C.A., Chi, M., Guo, B., Sun, X.-G., and Dai, S.: Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J. Power Sources 222, 461466 (2013).
145.Jiang, Y., Hall, C., Song, N., Lau, D., Burr, P., Patterson, R., Wang, D.-W., Ouyang, Z., and Lennon, A.: Evidence for fast lithium-ion diffusion and charge transfer reactions in amorphous TiOx nanotubes: Insights for high rate electrochemical energy storage. ACS Appl. Mater. Interfaces 10(49), 4251342523 (2018).
146.Yoo, M., Frank, C.W., Mori, S., and Yamaguchi, S.: Effect of poly(vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery. Polymer 44(15), 41974204 (2003).
147.Bülter, H., Peters, F., Schwenzel, J., and Wittstock, G.: In situ quantification of the swelling of graphite composite electrodes by scanning electrochemical microscopy. J. Electrochem. Soc. 163(2), A27A34 (2016).
148.Zhang, X., Cheng, X., and Zhang, Q.: Nanostructured energy materials for electrochemical energy conversion and storage: A review. J. Energy Chem. 25, 967984 (2016).
149.Logan, E.R., Tonita, E.M., Gering, K.L., Li, J., Ma, X., Beaulieu, L.Y., and Dahn, J.R.: A study of the physical properties of Li-ion battery electrolytes containing esters. J. Electrochem. Soc. 165(2), A21A30 (2018).
150.Nishi, Y., Azuma, H., and Omaru, A.: Non aqueous electrolyte cell. U.S. Patent No. 4959281, 1990.
151.Valøen, L.O. and Reimers, J.N.: Transport properties of LiPF6-based li-ion battery electrolytes. J. Electrochem. Soc. 152(5), A882A891 (2005).
152.Pavlov, D., Naidenov, V., and Ruevski, S.: Influence of H2SO4 concentration on lead-acid battery performance: H-type and P-type batteries. J. Power Sources 161(1), 658665 (2006).
153.Doyle, M., Fuller, T.F., and Newman, J.: The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta 39(13), 20732081 (1994).
154.Capiglia, C., Saito, Y., Kageyama, H., Mustarelli, P., Iwamoto, T., Tabuchi, T., and Tukamoto, H.: 7Li and 19F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries. J. Power Sources 81–82, 859862 (1999).
155.Diederichsen, K.M., McShane, E.J., and McCloskey, B.D.: Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2(11), 25632575 (2017).
156.Buannic, L., Colin, J.-F., Chapuis, M., Chakir, M., and Patoux, S.: Electrochemical performances and gassing behavior of high surface area titanium niobium oxides. J. Mater. Chem. A 4(29), 1153111541 (2016).
157.Lv, W., Gu, J., Niu, Y., Wen, K., and He, W.: Review—Gassing mechanism and suppressing solutions in Li4Ti5O12-based lithium-ion batteries. J. Electrochem. Soc. 164(9), A2213A2224 (2017).
158.Rodrigues, M.-T.F., Kalaga, K., Trask, S.E., Shkrob, I.A., and Abraham, D.P.: Anode-dependent impedance rise in layered-oxide cathodes of lithium-ion cells. J. Electrochem. Soc. 165(9), A1697A1705 (2018).
159.Takenaka, N., Suzuki, Y., Sakai, H., and Nagaoka, M.: On electrolyte-dependent formation of solid electrolyte interphase film in lithium-ion batteries: Strong sensitivity to small structural difference of electrolyte molecules. J. Phys. Chem. C 118(20), 1087410882 (2014).
160.Wang, J., Yamada, Y., Sodeyama, K., Chiang, C.H., Tateyama, Y., and Yamada, A.: Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).
161.Drozhzhin, O.A., Shevchenko, V.A., Zakharkin, M.V., Gamzyukov, P.I., Yashina, L.V., Abakumov, A.M., Stevenson, K.J., and Antipov, E.V.: Improving salt-to-solvent ratio to enable high-voltage electrolyte stability for advanced Li-ion batteries. Electrochim. Acta 263, 127133 (2018).
162.Zeng, Z., Murugesan, V., Han, K.S., Jiang, X., Cao, Y., Xiao, L., Ai, X., Yang, H., Zhang, J.-G., Sushko, M.L., and Liu, J.: Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 3(8), 674681 (2018).
163.Sloop, S.E., Pugh, J.K., Wang, S., Kerr, J.B., and Kinoshita, K.: Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem. Solid-State Lett. 4(4), A42A44 (2001).
164.Zhang, X. and Devine, T.M.: Identity of passive film formed on aluminum in li-ion battery electrolytes with LiPF6. J. Electrochem. Soc. 153(9), B344B351 (2006).
165.Aurbach, D., Markovsky, B., Levi, M.D., Levi, E., Schechter, A., Moshkovich, M., and Cohen, Y.: New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J. Power Sources 81–82, 95111 (1999).
166.Kim, J.-H., Pieczonka, N.P.W., Li, Z., Wu, Y., Harris, S., and Powell, B.R.: Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochim. Acta 90, 556562 (2013).
167.Pieczonka, N.P.W., Liu, Z., Lu, P., Olson, K.L., Moote, J., Powell, B.R., and Kim, J.-H.: Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J. Phys. Chem. C 117(31), 1594715957 (2013).
168.Jiang, F. and Peng, P.: Elucidating the performance limitations of lithium-ion batteries due to species and charge transport through five characteristic parameters. Sci. Rep. 6, 32639 (2016).
169.Bai, P. and Bazant, M.Z.: Charge transfer kinetics at the solid–solid interface in porous electrodes. Nat. Commun. 5, 3585 (2014).
170.Yamada, H. and Bandaru, P.R.: Electrochemical kinetics and dimensional considerations, at the nanoscale. AIP Adv. 6(6), 065325 (2016).
171.Goubard-Bretesché, N., Crosnier, O., Favier, F., and Brousse, T.: Improving the volumetric energy density of supercapacitors. Electrochim. Acta 206, 458463 (2016).
172.Miller, J.R. and Burke, A.K.: Electrochemical capacitors: Challenges and opportunities for real-world applications. Electrochem. Soc. Interface 17(1), 53057 (2008).
173.Gao, S., Rahmat-Samii, Y., Hodges, R.E., and Yang, X.: Advanced antennas for small satellites. Proc. IEEE 106(3), 391403 (2018).
174.Schmidt, O., Hawkes, A., Gambhir, A., and Staffell, I.: The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017).
175.Lazard: Levelized Cost of Storage Analysis (2016). Available at: (accessed September 5, 2018).
176.Lazard: Levelized Cost of Storage Analysis (2017). Available at: (accessed September 5, 2018).
177.Meshram, P., Pandey, B.D., and Mankhand, T.R.: Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 150, 192208 (2014).
178.Martin, G., Rentsch, L., Höck, M., and Bertau, M.: Lithium market research—Global supply, future demand and price development. Energy Storage Mater. 6, 171179 (2017).
179.Perotti, R. and Coviello, M.F.: Governance of Strategic Minerals in Latin America: The Case of Lithium. Available at: (accessed July 1, 2017).
180.Jaskula, B.W.: U.S. Geological Survey, Mineral Commodity Summaries (2018). Available at: (accessed October 22, 2018).
181.Loganathan, P., Naidu, G., and Vigneswaran, S.: Mining valuable minerals from seawater: A critical review. Environ. Sci.: Water Res. Technol. 3(1), 3753 (2017).
182.Paranthaman, M.P., Li, L., Luo, J., Hoke, T., Ucar, H., Moyer, B.A., and Harrison, S.: Recovery of lithium from geothermal brine with lithium–aluminum layered double hydroxide chloride sorbents. Environ. Sci. Technol. 51(22), 1348113486 (2017).
183.Li, L., Deshmane, V.G., Paranthaman, M.P., Bhave, R., Moyer, B.A., and Harrison, S.: Lithium recovery from aqueous resources and batteries: A brief review. Johnson Matthey Technol. Rev. 62(2), 161176 (2018).
184.Mayyas, A., Steward, D., and Mann, M.: The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries. Sustainable Mater. Technol. 19, e00087 (2019).
185.Narins, T.P.: The battery business: Lithium availability and the growth of the global electric car industry. Extr. Ind. Soc. 4(2), 321328 (2017).
186.Sanderson, H.: Lithium Prices to Fall 45% by 2021, Morgan Stanley Says. Available at: (accessed July 1, 2018).
187.Kushnir, D. and Sandén, B.A.: The time dimension and lithium resource constraints for electric vehicles. Resour. Policy 37(1), 93103 (2012).
188.Olivetti, E.A., Ceder, G., Gaustad, G.G., and Fu, X.: Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals. Joule 1(2), 229243 (2017).
189.Charles, R.G., Douglas, P., Hallin, I.L., Matthews, I., and Liversage, G.: An investigation of trends in precious metal and copper content of RAM modules in WEEE: Implications for long term recycling potential. Waste Manag. 60, 505520 (2017).
190.Hertwich, E.G., Gibon, T., Bouman, E.A., Arvesen, A., Suh, S., Heath, G.A., Bergesen, J.D., Ramirez, A., Vega, M.I., and Shi, L.: Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. U. S. A. 112(20), 6277 (2015).
191.Energy Matters: Solar PV and Electric Vehicles to Boost Copper Demand (2016). Available at: (accessed September 7, 2018).
192.Ciacci, L., Vassura, I., and Passarini, F.: Urban mines of copper: Size and potential for recycling in the EU. Resources 6(1), 6 (2017).
193.Graedel, T.E., Allwood, J., Birat, J.-P., Buchert, M., Hagelüken, C., Reck, B.K., Sibley, S.F., and Sonnemann, G.: What do we know about metal recycling rates? 15(3), 355366 (2011).
194.Weight, D.: Cobalt Production Statistics: 2017 Production Statistics. Available at: (accessed October 23, 2018).
195.Shedd, K.B.: U.S. Geological Survey, Mineral Commodity Summaries (2018). Available at: (accessed October 22, 2018).
196.King, A.: Battery Builders Get the Cobalt Blues. Available at: (accessed July 1, 2018).
197.Sanderson, H.: China Tightens Grip on Global Cobalt Supplies. Available at: (accessed July 1, 2018).
198.INN: The Critical Need for Cobalt Supply Diversification. Available at: (accessed July 1, 2018).
199.Call2Recycle: Recycling Laws by State. Available at: (accessed March 8, 2019).
200.Zeng, X., Li, J., and Singh, N.: Recycling of spent lithium-ion battery: A critical review. Crit. Rev. Environ. Sci. Technol. 44(10), 11291165 (2014).
201.Ordoñez, J., Gago, E.J., and Girard, A.: Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable Sustainable Energy Rev. 60, 195205 (2016).
202.Zheng, X., Zhu, Z., Lin, X., Zhang, Y., He, Y., Cao, H., and Sun, Z.: A mini-review on metal recycling from spent lithium ion batteries. Engineering 4(3), 361370 (2018).
203.Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., and Sun, Z.: A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chem. Eng. 6(2), 15041521 (2018).
204.Heelan, J., Gratz, E., Zheng, Z., Wang, Q., Chen, M., Apelian, D., and Wang, Y.: Current and prospective li-ion battery recycling and recovery processes. JOM 68(10), 26322638 (2016).
205.Zeng, X., Li, J., and Liu, L.: Solving spent lithium-ion battery problems in China: Opportunities and challenges. Renewable Sustainable Energy Rev. 52, 17591767 (2015).
206.Zhang, W., Xu, C., He, W., Li, G., and Huang, J.: A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Waste Manag. Res. 36(2), 99112 (2018).


Type Description Title
Supplementary materials

Lennon et al. supplementary material
Lennon et al. supplementary material 1

 Word (163 KB)
163 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed